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Abstract
In this age of information overload, one experiences a rapidly growing over-abundance of

written text. To assist with handling this bounty, this plethora of texts is now widely used to
develop and optimize statistical natural language processing (NLP) systems. Surprisingly, the
use of more fragments of text to train these statistical NLP systems may not necessarily lead to
improved performance. We hypothesize that those fragments that help the most with training
are those that contain the desired information. Therefore, determining informativeness in text
has become a central issue in our view of NLP. Recent developments in this field have spawned
a number of solutions to identify informativeness in text. Nevertheless, a shortfall of most of
these solutions is their dependency on the genre and domain of the text. In addition, most of
them are not efficient regardless of the natural language processing problem areas. Therefore,
we attempt to provide a more general solution to this NLP problem.

This thesis takes a different approach to this problem by considering the underlying theme
of a linguistic theory known as the Code Quantity Principle. This theory suggests that humans
codify information in text so that readers can retrieve this information more efficiently. Dur-
ing the codification process, humans usually change elements of their writing ranging from
characters to sentences. Examples of such elements are the use of simple words, complex
words, function words, content words, syllables, and so on. This theory suggests that these
elements have reasonable discriminating strength and can play a key role in distinguishing in-
formativeness in natural language text. In another vein, Stylometry is a modern method to
analyze literary style and deals largely with the aforementioned elements of writing. With this
as background, we model text using a set of stylometric attributes to characterize variations
in writing style present in it. We explore their effectiveness to determine informativeness in
text. To the best of our knowledge, this is the first use of stylometric attributes to determine
informativeness in statistical NLP. In doing so, we use texts of different genres, viz., scien-
tific papers, technical reports, emails and newspaper articles, that are selected from assorted
domains like agriculture, physics, and biomedical science. The variety of NLP systems that
have benefitted from incorporating these stylometric attributes somewhere in their computa-
tional realm dealing with this set of multifarious texts suggests that these attributes can be
regarded as an effective solution to identify informativeness in text. In addition to the vari-
ety of text genres and domains, the potential of stylometric attributes is also explored in some
NLP application areas—including biomedical relation mining, automatic keyphrase indexing,
spam classification, and text summarization—where performance improvement is both impor-
tant and challenging. The success of the attributes in all these areas further highlights their
usefulness.

Keywords: Stylometry, The Code Quantity Principle, Text Analytics, Natural Language
Processing, Machine Learning, Computational Linguistics, Biomedical Relation Mining,
Keyphrase Indexing, Spam Classification, Text Summarization.
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Chapter 1

Introduction

1.1 Thesis Statement

Determining informativeness or importance in text is a big challenge in natural language pro-
cessing. In this thesis, we explore some possibilities to find informativeness in text using a
set of natural language attributes or features related to Stylometry—the linguistic analysis of
writing style. The hypothesis underlying our exploration is based on a linguistic principle
that authors apply linguistic techniques, deliberately or not, to codify important information
in texts. The principle is widely known as the Code Quantity Principle [1]. Interestingly, the
elements of this codification are also the key elements present in the writing styles of humans.
In this study, these shared elements are represented as attributes—called the stylometric at-
tributes—based on Stylometry. Using these attributes, we provide a more general solution to a
problem that so far has been approached mostly with domain-dependent solutions.

1.2 Problem Statement

On a good note, most texts now-a-days are in digital form and publicly available. Because of
this plethora of text, for the last few years, we have experienced a big increase in statistical nat-
ural language processing. The effectiveness of the methods from this domain depends mostly
on the quantity and the quality of data. Although both aspects are equally important, the quan-
tity of data almost always receives most of the attention. More data beats the algorithm and
the model was almost the tone set by some of the state-of-the-art research in natural language
processing (see for instance, [2] and [3]). However, in his talk at the Strata 2012 conference,
Netflix’s Xavier Amatriain said something very different—“Data is important but data without
a sound approach becomes noise” [4] . He argued that language models usually have high
variance and therefore adding more data helped the studies mentioned in [2] [3]. Surprisingly
for data with high bias, adding more data simply does not help. Therefore, the quantity of data
is not the sole end means to succeed in natural language processing.

A trivial way to insure data quality is data preprocessing such as removing function words,
non-ASCII symbols, html tags, interpreting mathematical formulae, etc. [5]. And surpris-
ingly, on many occasions, data preprocessing indeed boosts performance of natural language
processing methods [6]. A better way to generate quality text data is to classify important or

1
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informative text units like words, sentences, and paragraphs among a set of text units. The
usual definition of importance or informativeness of data is the amount of detail contained in a
text unit [7] or its potential information-carrying capacity [8]. In addition to the performance
boost, selecting an important subset of texts should also substantially reduce extraneous data
and remove unwanted work from various text processing routines. This is absolutely impor-
tant because of today’s information overload when everyone is trying to get rid of unnecessary
data [9].

Unfortunately, until now, there are very few attributes to gauge informativeness of text
data that do not depend on the genre (i.e., scientific documents, newswire articles, and emails)
or domain (i.e., agriculture, economics, politics physics, sports, disaster and even biomedical
science) of the data. For instance, sentence position is a good attribute for summarization
methods but not for spam classification; it is good for newspaper article summarization but
not for summarizing medical questionnaires. Over the last decades, a number of surface-level
text attributes have been proposed by many studies (see, for example, [10–15]). However,
much is discussed about their limitations including their excessive domain dependency. Some
semantic graph-based [16] and n-gram text attributes [17], however, are promising in terms
of performance on different texts. Still, only a few attributes can be named that perform well
despite difference in genres and domains of the data.

1.3 Motivation

Text importance and human psychology are tied together by some interesting research. Duffy
and Kabance [18], for instance, explored the reasons behind the easy-readings of kindergarten
prose. Their scientific study was centered around human psychology of signaling information
and its effect on writing. What they have found is interesting: the sentences of kindergarten
prose are less informative and by being so, they contain fewer complex words and syllables
making them simple to read. Interestingly, a linguistics theory known as the Code Quantity
Principle [1] also proposed much the same thing. The theory states that humans codify impor-
tant information in texts in such a way that it can signal the reader, and the codification process
is based on conscious or unconscious changes made in the use of some linguistic elements such
as syllables, long and short words, etc. This theory has been recently supported with substantial
evidence that suggests that authors have a tendency to make sentences that have more coded
information longer than others (see, for instance, [19]).

Stylometry, on the other hand, is a branch of linguistics that studies writing styles in texts.
It assumes that combining words into syntactic structures through writing is both habitual and
variable, and during this procedure authors create individualized and unconscious patterns that
can distinguish one from another [20]. The patterns often can be represented with features that
are quantifiable, distinctive, salient, frequent, and relatively immune from the conscious control
of authors [21]. Besides, these features, known as stylometric features, help to count stylistic
traits of a particular author and to distinguish genuine style from mere chance variation in
usage [22]. Following are some features related to stylometry: word length, number of syllables
in a sentence, sentence length, distribution of parts-of-speech, number of function words in a
sentence, vocabulary richness, vocabulary distributions, word frequency, etc. (more detail of
these features can be found in [22]). Note that these features or attributes are closely related to
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those that humans consciously or unconsciously modify during their codification of important
information in texts as described in the code quantity principle [23]. The two views captured
by stylometry and the code quantity principle are therefore closely related. However, to the
best of our knowledge, the link has not been established yet because the former hypothesizes
that patterns in writing are mostly individualized, while the latter finds that in certain situations
the patterns can be generalized.

1.4 Objectives

The thesis has three major objectives. As the thesis progresses, the reader will understand that
we try to explore new ideas and possibilities but always keep the following three objectives in
mind.

To define a novel set of natural language attributes that can identify informativeness. We
are interested in defining a more general, non-domain-specific but still effective set of natural
language attributes. In doing so, combining both the Code Quantity Principle and Stylometry
we define a set of stylometric attributes to model unit of text present in documents or articles.
We consider the informativeness determination problem as a binary classification problem:
one class of text units will be informative while the rest will be in the non-informative class.
Note that throughout the research we use the sentence as the text unit. The only exception is
our work on spam classification where the body of email is considered as the text unit (see
Chapters to ).

To evaluate the attributes for different genres of text. This evaluation should test the scope
of applicability of the attributes for different genres of texts. We limit this scope in this thesis
to the texts collected from domains like biomedical science, agriculture, nuclear physics, email
texts, and newspaper articles.

To apply the attributes for different natural language processing tasks. There are some
natural language processing application areas for which we can apply the attributes and observe
their possibilities. Some of the areas are classic like text classification and summarization while
some are becoming crucial and important such as biomedical relation mining and automatic
keyphrase indexing.

We have carefully selected the genres of texts and application areas so that we can compare
our work with previous state-of-the-art techniques. These comparisons are required to allow
us to remark on the accomplishments of our research. In addition, to achieve the goals of the
thesis, we explore various machine-learning techniques like supervised and semi-supervised
learning.

Note that this thesis explores the possibility of stylometric attributes to indentify informa-
tiveness in texts. We, however, do not attempt to explore the reasons behind the capacity to
determine informativeness that they display. Although the reasons would be very interesting
to know, a thorough investigation is required to answer those questions. Such an investigation
can be seen as a possible extension to this thesis.
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1.5 Contributions

In many aspects, the thesis has some major contributions. First, we define a novel set of natural
language attributes related to stylometry to identify informativeness in texts. Much empirical
evidence confirms that the attributes have potential strength to distinguish informativeness in
texts. We explore the merits of the attributes for a wide array of domains like agriculture,
physics, biomedial science, email, and newspaper articles. This finding is significant since
we have only a few genre-independent natural language attributes. The other key contribution
of the research is the strong evidence of the attributes’ applicability in some state-of-the-art
natural language processing areas that include biomedical relation mining, keyphrase indexing,
spam classification, and single and multi-document text summarization. Last but not least,
during this research, we have enhanced the usefulness of some benchmark datasets, that is we
have provided an extra set of labellings for sentences, viz. the BioNLP [24], BioDRB [25],
FetchProt [26], and the SemEval-2010 task 5 dataset [27].

1.6 Thesis Organization

The chapters in this thesis are designed in a way that should help the reader to understand the
transitions that we had in our thinking and our approach. At the beginning of the research, our
focus was only to find informativeness in biomedical texts. To do so, we used a single attribute
known as the Fog Index [28]. The Fog Index is a yardstick measure to assess text readabil-
ity. At this stage we did not consider the Fog Index to be a Stylometric attribute although the
parameters of the index are all related to Stylometry. Also, as a sanity check to see whether
this index had some possibilities, we did not develop any machine-learning techniques at this
stage. Rather, we were relying on simple heuristic rules to classify the sentences of texts as
informative and non-informative. We named this simple, single-attribute and rule-based idea
Text Denoising since its main objective is to remove non-informative, redundant text called the
noise text. The work in the first few chapters, namely from Chapter 2 to 5, are built upon this
idea. However, at some point, we understood the method’s limitations which motivated us to
make two important methodological changes that are summarized in Chapter 6. First, we devel-
oped a machine-learning approach and second we explored more attributes. However, although
the bulk of the attributes are stylometric, the success of the approach depended somewhat on
some domain-specific attributes. Therefore, the reader might note that we did not use the term
stylometry or stylometric attributes before Chapter 8. The objective of our research changed
ever so slightly from that point on—we began to emphasize the evaluation of the attributes for
texts of different genres and domains rather than simply denoising text by removing redundant
text fragments from biomedical research articles. We started to see the problem of determin-
ing informativeness as a binary classification problem and applied machine-learning models
generated from the stylometric attributes for text classification (Chapters 7 to 9), biomedical
relation mining (Chapter 10), and text summarization (Chapter 11). Note that our approaches
before and after the transitions are very closely related—the minor difference being how the
output is presented.

The thesis is organized as follows:



www.manaraa.com

Chapter 1. 5

Chapter 1 provides the introduction to the thesis. The chapter outlines the problem, moti-
vation for doing this research, thesis objectives, and contributions to the scientific community.

Chapter 2 outlines a method for text reduction called Text Denoising that can be used
as a first step for the effective mining of biomedical concepts containing disease and chemical
relations from research articles. The method uses a single attribute related to readability known
as the Fog Index [28] and heuristics to classify sentences into informative and non-informative
categories.

Chapter 3 extends the work in Chapter 2 by using four more attributes related to readabil-
ity.

In Chapter 4, we move our focus from biomedical relation mining task to aiding automatic
keyphrase indexing. The chapter describes the use of Text Denoising as an intermediate step to
enhance the performance of a supervised keyphrase indexing tool called Maui. The chapter is
brief because its content is published as a short paper. For more details, a useful source can be
found elsewhere1.

Chapter 5 is built upon the work described in Chapter 4. It describes the application of
Text Denoising for enhancing the performance of two supervised keyphrase indexers named
KEA [29] and KEA++ [30]. Based on the idea presented in the following chapter, the work of
Chapters 4 and 5 is extended and can be found in Appendix A.

Chapter 6 can be seen as the transition chapter between our rule-based and machine-
learning based approaches. Additionally, this chapter briefly summarizes the work presented
in the previous chapters.

Chapter 7 describes an anti-spam filter developed using the stylometric attributes and
machine-learning models to classify both personalized and non-personalized spam emails.

Chapter 8 extends and improves the work described in Chapter 7 for personalized spam
emails.

Chapter 9 combines and extends the work presented in Chapter Chapter 7 and 8. The
contents of this chapter include more in-depth analysis of the performance of the anti-spam
filter.

Chapter 10 outlines the performance of the stylometric attributes for protein relation bear-
ing sentence classification in biomedical research articles. This work can be seen as an exten-
sion of the work presented in Chapter 6 but with more sophisticated machine-learning methods
and with more attributes.

Chapter 11 illustrates how the stylometric attributes perform for single and multi-document
summarization.

Finally, Chapter 12 briefly summarizes the thesis and explores its limitations and possible
avenues for extension.
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Chapter 2

Extracting Connected Concepts from
Biomedical Texts using Fog Index

This chapter is based on the paper titled “Extracting Connected Concepts from Biomedical
Texts using Fog Index” co-authored with Robert E. Mercer that appeared in the 12th Confer-
ence of the Pacific Association for Computational Linguistics (PACLING 2011).

In this paper, we establish Fog Index (FI) as a text filter to locate the sentences in texts that
contain connected biomedical concepts of interest. To do so, we have used 24 random papers
each containing any of the four pairs of connected concepts. For each pair, we categorize
sentences based on whether they contain both, any or none of the concepts. We then use FI
to measure the difficulty of the sentences of each category and find that sentences containing
both of the concepts have low readability. We rank sentences of a text according to their FI
and select 30 percent of the most difficult sentences. We use an association matrix to track the
most frequent pairs of concepts in them. This matrix reports that the first filter produces some
pairs that hold almost no connections. To remove these unwanted pairs, we use the Equally
Weighted Harmonic Mean of their Positive Predictive Value (PPV) and Sensitivity as a second
filter. Experimental results demonstrate the effectiveness of our method.

2.1 Introduction

In recent years, extraction of connected biomedical concepts (i.e., disease, treatment, genes)
from texts has drawn the attention of scientists interested in finding functional similarity (i.e.,
identification of genes involved in human diseases) [1]. Although benchmark research has
reported successful methods to extract biomedical concepts [2, 3], they have rarely followed
simple procedures. For example, Perez-Iratxeta et al. [4] could not relate diseases with gene
functions from biomedical texts forthwith- they needed to apply a twofold intermediary pro-
cess of connecting disease with chemical components and chemical components with gene
functions. The key reason for not applying simple methods to extract connected concepts
from biomedical texts is manifold. While some researchers concentrated on the number of co-
occurrence of concepts in the abstract of a paper [4,5], others preferred to comb through either
the full text [6] or pre-specified segments (i.e., Introduction, Methods, Results, and Discus-
sion) [7]. Moreover, the connections can be either very general (i.e., biochemical connections)

9
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or very specific (i.e., regulatory connections). Therefore, the demand of developing simple
methods to identify and extract biomedical concepts from a scientific literature that maintain
connections, general or specific, with one another is not met till to date. This situation suggests
to use simple yet improved computational method to identify and extract important, explicit,
and implicit connections from biomedical texts.

As text is highly structured by syntax and semantics of natural language, it is believed that
any relation extraction method should involve these two features. However, several reports as-
serted their complexity [8, 9]. Apart from this, Sherman [10] proposed that scientific literature
is subject to statistical analysis and zeroed in on the importance of average sentence length.
Gunning [11] practically demonstrated this important measure along with the number of com-
plex words (i.e., words with three or more syllables) to assess the readability of text known as
the Fog Index (hereinafter, FI). It is now considered a yardstick for readability assessment of
books, scientific literature and newspapers, and even to detect online chatting bots [12]. Be-
sides, an interesting ascertainment that texts become relatively difficult to read when contain
ideas and relations [18] can be motivational for using FI to find hidden relations in papers.

In this paper, we report a simple novel statistical method to extract connected biomedical
concepts from biomedical texts using FI. We statistically established FI as a text filter, ex-
perimenting on 24 random papers that describe four pairs of concepts: Ischemia-Glutamate,
Ataxia-Dehydrogenase, Hypogonadism-Gonadotropin, and Epilepsy-GABA. Besides FI, our
method also uses the equally weighted harmonic mean of the connections’ Positive Predictive
Value (hereinafter, PPV) and sensitivity as a second filter. While the prior concentrates on the
important part of the text where the connections are stated, the latter assesses their represen-
tativeness. We selected the sentences of a paper that are difficult to read and ranked the most
frequent connected concepts present in them. With careful observations, we noticed that the
first filter produces some noisy pairs of concepts that hold almost no connection. To exclude
them, we re-ranked every pair of concepts based on the equally weighted harmonic mean of
their PPV and sensitivity, and filtered them.

In the remainder of this paper, we describe related work, illustrate the methodology, report
and discuss experimental results, and draw conclusions.

2.2 Related Work

New research trends in the biomedical field include the discovery of hidden connections in
texts to form new hypotheses that can be explored further by conventional experimentation [6].
A series of investigations by Swanson [13, 14] showed that these hidden connections can lead
us to new discoveries. He reported that fish oil leads to change in blood viscosity and red blood
cell rigidity that helps prevent Raynaud’s syndrome [13]. Later, investigative reports started to
discover suggestions for clinical therapies and basic physiological linkages from bibliographi-
cally isolated texts. However, the working principles of Swanson’s empirical research include
the computational burden of full-text syntactic analysis and involve large literature databases
like MEDLINE. Our work, though it does not generate hypotheses, can be a good means of
finding implicit connections in texts using fewer computations (as it filters out texts according
to their readability and does not operate syntactically) without involving literature repositories.

A handful of research work in semantic relation classification or extraction from bioscience
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texts depends on the proper identification of connections. Rosario and Hearst [15] concentrated
on discovering connections between “treatment” and “disease”. They reported 79.6 percent
accuracy in blindly identifying concepts that fall into either of the categories and are somehow
connected with one another. They used a MEDLINE-based neural network that addresses it to
be intriguing yet complicated. A similar machine learning technique was applied by Frunza
and Inkpen [8] to extract disease-treatment connections from texts. Their reported accuracy
surpassed the results of Rosario and Hearst although their interest was limited to MEDLINE
2001 titles and abstracts. Their paper, like many other prominent work [16,17], has a significant
use of PPV and sensitivity to evaluate the mining technique. Contrary, we used these measures
to evaluate the representativeness of the connected concepts.

Perez-Iratxeta et al. [4] proposed a massive framework to prioritize disease associated
genes. Instead of looking into literature, they combined several isolated pieces of biomedical
repositories like Medical Subject Heading (MeSH), Gene Ontology (GO), RefSeq database,
and MEDLINE. They used both databases and ontology that have lack in communication with
one another and thus experienced tedious and complex scoring methods and formidable num-
ber of intermediate stages. In our work, we decided to stick with texts only to remain simple
yet capable of producing improved results.

Robert Gunning [11] first introduced Fog Index (FI) to measure semantic difficulties using
average sentence length and polysyllabic words in his 1952 book The Technique of Clear Writ-
ing. We were motivated to apply FI as our text filter when we came across the results of an
experiment carried out by Duffy and Kabance [18]. They converted a passage with no more
than two phrases into primer prose and applied FI to test its readability. They found the score
well below the readability index (i.e., it was excessively easy to read). Their investigation on
this phenomenon suggested that easy articles (in this case the primer prose) obscure the rela-
tionships and ideas as they emphasize each of them equally. In other words, difficult articles
possess relationships and ideas and emphasize them in particular that yields low readability.
We believe that if biomedical texts display a similar attribute, then FI can be an appropriate
measure to filter texts that bear associations of scientific interest.

2.3 Methodology

The work of Perez-Iratxeta et al. [4] lists pairs of connected concepts like disease-chemical
components, chemical component-genes, and disease-genes. Among them, we considered
four disease-chemical component pairs, namely Ischemia-Glutamate, Ataxia-Dehydrogenase,
Hypogonadism-Gonadotropin., and Epilepsy-GABA. We collected 24 scientific papers (six for
each pair of concepts) at random from several biomedical literature repositories. To work with
the text only, we removed the title, affiliations, keywords, footnotes, figures, tables, acknowl-
edgements, and references from the paper.

We considered each pair of concepts and a paper related to them. We classified its sen-
tences into three sets: sentences containing both of the concepts, none of the concepts and any
of the concepts. For example, the sentence “Glutamate, which is potentially excito-toxic to
brain neurons, is released excessively during ischemia”, will be put into the set of sentences
containing both of the concepts Ischemia and Glutamate, as Ischemia and Glutamate are both
present. Then, we applied Gunning’s formula for FI (Eq. 2.1) to score the sentences of every
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set. According to this formula, the lower the score of a sentence, the easier it is to read.

Fog Index = 0.4 ×
((

Words
Sentence

)
+ 100 ×

(
Complex Words

Words

))
(2.1)

It can be noted that according to Gunning, words that are polysyllabic (i.e., contain three or
more syllables) are called Complex Words. Also, as we applied FI on every sentence, the value
of Sentences is always 1. We normalized this score by the paper’s average number of syllables
per word because readability score of long and short sentences varies due to the total number
of syllables [11]. Eq. 2.2 provides the normalized FI (FI′) of the sentences in every set.

Normalized Fog Index, FI′ =
Fog Index, FI

Average No. of Syllables per Word
(2.2)

The FI′ calculated for the three sets of sentences for the 24 papers in groups related to the
four pairs of connected concepts are shown in Table 2.1.

Table 2.1 shows that, for every pair of connected concepts, while the set of sentences con-
taining any or both of the concepts displays either Low or Medium readability, the set of sen-
tences containing none of them consistently has High readability (i.e., Low FI′). This obser-
vation leads us to decide that those sentences that are easier to read contain fewer connected
concepts and therefore, we should look into low-readable sentences for hidden connections.

Now that we have FI as a functioning text filter, we need to define a means to determine
the number of low-readable sentences to be considered for concept extraction. To do this, we
ranked every sentence in a paper based on their FI score and sorted them in descending order
(i.e., the most difficult sentences are at the top of the list). From this sorted list, in five chunks,
we selected the top 50 percent, 40 percent, 30 percent, 20 percent, and 10 percent of the sen-
tences. For every chunk, we tagged these sentences with Genia Biomedical POS tagger [19],
identified the nouns in them and used an association matrix to record the frequency of their
co-occurrences (i.e., number of occurrences of one noun with the other). For instance, the con-
nected concepts in the sentence “Glutamate, which is potentially excito-toxic to brain neurons,
is released excessively during ischemia” are glutamate-brain, glutamate-neurons, glutamate-
ischemia, brain-neurons, brain-ischemia, and neurons-ischemia. From the output of the asso-
ciation matrix, we kept the 20 most frequent connected concepts for our experiment. As we
observed, some chunk i contains new connections that are absent in chunk i− 1 and vice versa.
To find a threshold, we tracked the number of connections revealed and missed by every chunk
i with respect to its previous chunk i − 1. From Figure 2.1, we see that for the first chunk (50
percent of the sentences), all of the 20 most frequent connections are new. The number of new
connections remains steady up to the third chunk (30 percent of the sentences) but then reaches
the extremes in the fourth and fifth. The results in Figure 2.1 are shown for six papers related to
Ischemia and Glutamate. Similar experiments with the other connected concepts showed that

Category Ischemia-
Glutamate

Readability Ataxia-
Dehydrogenase

Readability Epilepsy-
GABA

Readability Dehydrogenase-
Gonadotropin

Readability

FI′none 5.99 High 5.77 High 6.50 High 5.58 High
FI′both 8.26 Low 7.23 Medium 7.24 Medium 10.29 Low
FI′any 6.83 Medium 7.33 Low 7.58 Low 7.62 Medium

Table 2.1: Normalized FI for three sets of sentences from 24 papers
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Rank Connected Concepts Frequency Semantic Connection Rank Connected Concepts Frequency Semantic Connection
1 Levels-

Glutamate
48 Yes 8 10min-Ischemia 17 Yes

2 Ischemia-
Glutamate

37 Yes 9 Glutamate-
Neurons

16 Yes

3 Levels-Ischemia 33 No 9 Levels-5min 16 No
4 Levels-10min 22 No 9 Glutamate-

Experiment
16 Yes

4 10min-Glutamate 22 No 10 Levels-Neurons 15 No
5 Levels-Half 21 No 10 Glutamate-CA4 15 Yes
5 Levels-Increase 21 Yes 10 Levels-CA4 15 No
6 Increase-

Glutamate
20 Yes 11 Ischemia-5min 14 Yes

6 Glutamate-5min 20 No 11 Levels-
Pretreatment

14 No

7 Half-Glutamate 19 No 11 Levels-
Experiment

14 No

Table 2.2: Most frequent connected concepts for a paper on Ischemia and Glutamate

if we take less than 30 percent of the ranked sentences, the number of new concepts reaches
the extremes.

We recorded a similar behavior for the number of connections dropped by every chunk.
Figure 2.2 shows that as we start with it, the first chunk (10 percent of the sentences) does
not miss any connection but the number of dropped connections suddenly starts to reach the
extremes in the fourth and fifth. Again, the results in Figure 2.2 are produced by six papers on
Ischemia and Glutamate. Similar experiments carried out with the other connected concepts
showed that if we take less than 30 percent of the ranked sentences, the number of dropped
connections reach the extremes.

These two observations indicate that the degree of concepts connected with each other is
conserved if we take 30 percent of the low-readable sentences. Similar results are obtained for
the three other pairs of concepts.

Provided this threshold, Table 2.2 shows the 20 most frequent connected concepts found in
a paper on Ischemia-Glutamate where the connections are ranked according to their frequency.
For each pair shown in Table 2.2, we extracted those sentences from the paper that contain both
of the concepts. These sentences are fed to the Unified Medical Language System (UMLS)
semantic relation network [20] to find out if the concepts have any semantic connection. Sur-
prisingly, we found that among the 20 connected concepts, only nine have textual seman-
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Figure 2.2: Number of dropped connections in five chunks for six papers on Ischemia and
Glutamate

tic connections (Levels-Glutamate, Ischemia-Glutamate, Levels-Increase, Increase-Glutamate,
10min-Ischemia, Glutamate-Experiment, Glutamate-Neurons, Glutamate-CA4, and Ischemia-
5min).

So, FI, as a text filter, brings in some text that contains most frequent connected concepts,
some of which lack representativeness (i.e., they do not hold any connection). It urged us to
provide a means to filter out these noisy pairs of concepts. As we collected texts at random,
we observed that it is possible for the pairs to never co-occur in a sentence which indicates that
our data set is imbalanced. So, we used the equally weighted harmonic mean of the PPV and
sensitivity of the pairs of concepts provided by FI to evaluate their representativeness as it is a
great evaluation metric for imbalanced dataset [8].

PPV1 is the percentage of correctly predicted connections and sensitivity represents the
percentage of connections identified as relevant by our method. To measure the PPV and
sensitivity of every pair of concepts, we first considered the set of sentences filtered by FI
and counted the number. This is the total number of results returned by our system (R) that
comprises the number of True Positives (TP) and False Positives (FP). Then, we take a pair
depicted in Table 2.2, searched the paper, and developed a second set of sentences that contain
both of its concepts. The number of sentences in this set is the number of results that should
have been returned by our system (S) and comprises the number of True Positives (TP) and
False Negatives (FN). Finally, we counted the number of sentences that are present in both
sets– which is the number of TPs by our system. Afterwards, FP is obtained by subtracting TP
from R and FN is obtained by subtracting TP from S. So, the PPV of every pair of connected
concepts is TP

TP+FP and the sensitivity of every pair of connected concepts is TP
TP+FN . We then

applied the formula in Eq. 2.3 to determine the equally weighted harmonic mean for the given
pair of concepts. In this way, we measured this mean for every pair of concepts in Table 2.2.

Harmonic Mean of PPV and Sensitivity =
2 × PPV × Sensitivity

PPV + Sensitivity
. (2.3)

We re-ranked the pairs of concepts in Table 2.2 according to their individual Harmonic
Mean of PPV and Sensitivity, and considered the first 10 pairs of concepts. These 10 pairs of
connected concepts are said to be the representative connected concepts of the paper. Similar

1Similar to F-Score, Precision, and Recall but their use in Information Retrieval and Classification is different.
The terms PPV and Sensitivity have been used to avoid confusion with the evaluation terminology.
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procedure is followed to evaluate the representativeness of the pairs of concepts for the rest of
the connected concepts: Ataxia-Dehydrogenase, Hypogonadism-Gonadotropin, and Epilepsy-
GABA.

We also measured the accuracy of every connected pair by using Eq. 2.4–

Accuracy =
TP + TN

TP + FN + FP + TN
. (2.4)

where TN is the number of True Negatives and can be found by subtracting TP+FP+FN from
the total number of sentences in a text, and ranked them accordingly. However, we found that
in the case of accuracy, the ranked connections are not well distinguished.

2.4 Results and Discussions
In this section, the re-ranked connected concepts according to their individual Harmonic Mean
of PPV and Sensitivity are reported. The results show that most of the biomedical connected
concepts extracted by the proposed method are reported to be semantically connected by
UMLS. This indicates that the use of the Harmonic Mean substantially decreased the num-
ber of noisy relations extracted by the FI.

Table 2.3 lists the 10 connected concepts for a paper on Ischemia and Glutamate among
which seven pairs of concepts are reported as semantically connected by UMLS. It can be seen
that the pairs of concepts in Table 2.2 that hold merely no relation between them are decreased
significantly. However, the three pairs of concepts, not having any semantic connection, could
not be filtered because of their high frequency of co-occurrence in the text.

Table 2.4 shows the 10 connected concepts for a paper on Ataxia and Dehydrogenase,
seven of which are semantically connected in the UMLS semantic relation network. Our ob-
servation of this domain reveals that PDHC (Pyruvate Dehydrogenase Complex) is manifested
in Ataxia patients, especially those suffering from Friedreich’s Ataxia. So, the relations among
Friedreich, Ataxia and PDHC are vividly represented in the list. Pyruvate-Ataxia is extracted
as connected concepts because in the text, the elaboration of PDHC co-occurred with Ataxia
many times.

Table 2.5 lists the 10 connected concepts for a paper on Hypogonadism and Gonadotropin.
According to the UMLS semantic relation network, eight of these pairs are semantically con-
nected. Steroids have significant effects on diseases like Hypogonadism, where release of
testosterone plays an important role. Therefore, the connection between AAS (a shorthand for
Anabolic Androgenic Steroid) that induces Hypogonadism and Testosterone is present in the
list. The pairs of concepts not semantically connected are still reported by our method for their
extremely high co-occurrences in the text.

Table 2.6 displays the connected concepts present in a paper on Epilepsy and GABA.
Epilepsy is a neuronal disease that causes inhibition, significantly affects neuronal structure
like the Hippocampus, and is caused by low levels of GABA. In the list, we find seven con-
cepts that are semantically related according to UMLS. It should also be noted that the Har-
monic Mean of the pairs of concepts are significantly lower than that found from other papers,
meaning either the paper is small or the concepts co-occurred infrequently.
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Rank Connected Concepts Harmonic
Mean

Semantic
Connection

1 Ischemia-Glutamate 51.85 Yes
2 Levels-Ischemia 43.47 No
3 Levels-Glutamate 41.66 Yes
4 Glutamate-Neurons 39.02 Yes
5 10min-Ischemia 37.50 Yes
6 Glutamate-CA4 35.89 Yes
7 Increase-Glutamate 32.55 Yes
8 10min-Glutamate 31.81 No
9 Ischemia-5min 31.57 Yes
9 Glutamate-5min 31.57 No

Table 2.3: Connected concepts for a paper on Ischemia and Glutamate
Rank Connected Concepts Harmonic

Mean
Semantic

Connection
1 Friedreich-Ataxia 59.25 Yes
2 PDHC-Ataxia 56.00 Yes
3 Activity-Friedreich 43.47 Yes
3 Patients-Ataxia 43.47 Yes
3 Activity-Ataxia 43.47 Yes
3 PDHC-Friedreich 43.47 Yes
4 Preparations-Ataxia 40.00 No
4 Preparations-Friedreich 40.00 No
5 Pyruvate-Ataxia 38.09 No
6 Patients-Friedreich 36.36 Yes

Table 2.4: Connected concepts for a paper on Ataxia and Dehydrogenase

2.5 Conclusions

In this paper, we report on the extraction of connected concepts from biomedical texts by
assessing text readability. The readability of text is determined by a metric called Fog Index
(FI). We curated 24 random papers by using four pairs of connected concepts as keywords and
applied FI on them. Experimental results showed that sentences display low readability if they
contain connected concepts. We selected 30 percent of the most difficult-to-read sentences,
and used an association matrix to track the most frequent pairs of concepts in them. To remove
those pairs of concepts that have a rather weak connection, we used the equally weighted
harmonic mean of their positive predictive value and sensitivity as a second ranking filter. The
results are supported by finding almost all of the extracted concepts semantically connected by
the UMLS semantic relation network.
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Rank Connected Concepts Harmonic
Mean

Semantic
Connection

1 AAS-Treatment 29.41 Yes
2 Use-AAS 21.62 No
3 AAS-Testosterone 18.46 Yes
4 Gonadotropin-Treatment 18.18 Yes
5 Testosterone-Treatment 14.92 Yes
6 Levels-Testosterone 14.49 Yes
7 AAS-Conditions 12.90 Yes
7 Treatment-HCG 12.90 Yes
7 Replacement-Therapy 12.90 No
7 Treatment-Therapy 12.90 Yes

Table 2.5: Connected concepts for a paper on Hypogonadism and Gonadotropin
Rank Connected Concepts Harmonic

Mean
Semantic

Connection
1 Inhibition-GABA 26.08 Yes
2 GABA-Synapse 20.25 Yes
3 Neurons-Synapse 14.70 Yes
4 Inhibition-Hippocampus 12.30 Yes
5 Synapse-Change 9.37 No
6 Neurons-GABA 8.00 Yes
7 Properties-GABA 6.45 Yes
7 GABA-Change 6.45 No
8 GABA-Number 6.34 No
9 Cl-Gradient 3.33 Yes

Table 2.6: Connected concepts for a paper on Epilepsy and GABA
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Chapter 3

Evaluating Core Measures of Text
Denoising for Biomedical Relation Mining

This chapter is based on the paper titled “Evaluating Core Measures of Text Denoising for
Biomedical Relation Mining” co-authored with Robert E. Mercer that appeared in the 3rd
International Workshop on Global Collaboration of Information Schools (WIS 2012).

Text Denoising is a tool that reduces texts to their content-rich parts. It has been reported as
an effective tool which improves biomedical relation mining as well as supervised keyphrase
indexers for digital libraries. The idea behind text denoising is that the complexity of a sentence
plays an important role for it being the content-rich part of the text. Therefore, the core measure
of text denoising is a well-known readability formula called Fog Index (FI). However, the effect
of using other readability formulas is yet to be explored. In this paper we plug in four other
readability formulas—FRES, SMOG, FORCAST, and FKRI—with text denoising and report
their performance on mining relations from a corpus of 24 biomedical texts. Experimental
results show that FI outperforms all other formulas in terms of meaningful relation extraction.
The results also show that besides FI, formulas like SMOG index and FKRI can be used as
core measures of text denoising for biomedical relation mining.

3.1 Introduction

Readability formulas measure text difficulty in quantitative terms and thus are served as effec-
tive warning systems against complex writing style since the 1930’s. Nowadays, their use is
widespread—from the assessment of readability of newspaper articles and scientific literature
to the identification of chatting bots [1]. Recently, Shams and Mercer [2] proposed textual
noise reduction, similar to that in image processing, using FI—a technique to keep content-
rich sentences of a scientific paper based on their reading difficulty. The idea was based on a
hypothesis that texts yield complexity when they contain concepts and relations [3]. The tool
with its core measure FI, as applied on a corpus of 24 biomedical texts, extracted meaningful
biomedical relations. Later, it was applied on three keyphrase indexers KEA [4], KEA++ [5]
and Maui [6] to reduce their training data [7] [8]. Experimental findings showed that even with
reduced training data, the indexers induced better classifiers and achieved better F-score than
their benchmarks. The authors concluded that low-readable sentences of a text are content-rich

20
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Figure 3.1: Text denoising and related concept extraction method described by Shams and
Mercer [2]

when extracting relations or keyphrases.
To assess readability, FI considers two core measures, namely sentence length and com-

plex words. Currently, over 50 formulas have been proposed [9] as readability measures. They
consider different features involved in readability like paragraph length, white spaces, use of
headings, monosyllabic words, choice of sample size, and proper nouns [10]. Among these for-
mulas, four are considered not only as yardsticks but also close to the popularity of FI—Flesch
Reading Ease Score (FRES), SMOG Index, FORCAST Index, and Flesch-Kincaid Readabil-
ity Index (FKRI). Like FI, the two formulas provided by Flesch use the sentence length but
consider word length as their second core measure. However, the Flesch formulas use different
weighting factors leading them to correlate almost inversely with FI. On the other hand, SMOG
index is similar to FI except that it operates on some specific samples of the text. FORCAST,
unlike most other formulas, uses only one vocabulary element—monosyllabic words—making
it useful for texts without complete sentences. Despite the difference in their working princi-
ples, the formulas can estimate the difficulty of style; their intention is not to rate the content,
organization, format, imagery or quality of readers [11].

In this paper, we evaluate the performance of four readability formulas—FRES, SMOG,
FORCAST, and FKRI—on textual noise reduction and the mining of biomedical relations. We
apply the two-step method proposed by Shams and Mercer [2]: (i) extract the most frequent
related concepts in the 30% of the low-readable sentences of biomedical texts; (ii) and select
the related concepts with higher equally weighted harmonic mean of their Positive Predictive
Value (hereinafter, PPV) and sensitivity. To achieve this, we use the dataset of 24 full biomed-
ical texts [2] that describe four pairs of concepts: Ischemia-Glutamate,Ataxia-Dehydrogenase,
Hypogonadism-Gonadotropin, and Epilepsy-GABA [12]. Experimental results show that FI
outperforms the other four readability formulas as the core measure by extracting more mean-
ingful relations. The results also demonstrate that among the four formulas, SMOG index and
FKRI are competitive to be used like FI as the core measure of text denoising for biomedical
relation mining.

The organization of the paper is as follows. In the next section, we describe text denoising
as well as the readability formulas used in this research. Following that, Section 3.3 describes
the methodology. Section 3.4 shows the experimental findings. Section 3.5 draws the conclu-
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sion of the paper.

3.2 Background
In this section, we briefly describe the text denoising technique that extracts more content-rich
sentences from full biomedical texts based on their FI scores. This is followed by an overview
of the four readability formulas, FRES, SMOG, FORCAST, and FKRI. A detailed description
of FI can be found in [2].

3.2.1 Text Denoising
One key aspect of biomedical papers is that they contain hidden or explicit relations, especially
among drugs, chemicals, diseases, genes and proteins. Most of the proposed automated rela-
tion miners attempt to extract these relations from paper abstracts because they are easier to
access and they are believed to contain biomedical content information. However, it is unlikely
that abstracts will contain all important relations because they are at best the concise summaries
of texts. For this reason, a number of biomedical ontologies like OMIM (Online Mendelian
Inheritance in Man) and GO (Gene Ontology) use human annotators to extract relations from
full texts. This is a time-consuming as well as error-prone procedure. To overcome these short-
comings, Shams and Mercer [2] have proposed a method, Text Denoising, that identifies those
sentences in a text, called the denoised text, where content information, such as biomedical
relations, is more likely to occur. The rest of the text is called the noise text. The authors sug-
gested that the describing of biomedical relations lengthens sentences and increases the use of
polysyllabic words. Some readability indexes, the Fog Index in particular, are based on these
two factors. They proceeded to use Fog Index to measure sentence readability and showed
experimentally that 30% of the low-readability sentences, the denoised part of a text, contain
the relations of interest. Figure 3.1 shows the text denoising method.

To evaluate Text Denoising, the method was applied on a dataset of 24 full texts that de-
scribe four related pairs of disease and chemical components. The method extracted pairs of
biomedical concepts from the denoised part of the dataset of which about 75% are reported as
related by the Unified Medical Language System’s (UMLS) semantic relation network1. It was
also noted that the noise text did not contain any related biomedical entities of interest. These
experimental findings supported the hypothesis of the authors that sentences that are difficult
to read have the content information of the full text.

3.2.2 Overview of Readability Formulas
A brief description of the readability formulas is as follows (in historical order).

Flesch Reading Ease Score (FRES)

Considered as one of the oldest and most accurate readability indexes, FRES was developed to
advocate a return to the phonics [13]. The formula uses two core measures—average sentence

1Accessible through UMLS Terminology Services (UTS) at https://uts.nlm.nih.gov/home.html
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length and word length. It was originally developed to assess the grade-level of a reader. Its
use now extends to questionnaire formulation in the US Department of Defense and medical
form content assessment. Mathematically, FRES can be written as Eq. 3.1.

FRES = 206.835 − 1.015 ×
(

Total Words
Total Sentences

)
− 84.6 ×

(
Total Syllables

Total Words

)
(3.1)

The FRES score spans the range 0 to 100, where scores between 90 and 100 are considered
easily understandable by an average 5th grader and scores between 0 and 30 are considered
easily understandable by university graduates.

SMOG Index

SMOG index, when first published, was anticipated as a proper substitute for FI due to its
accuracy and ease of use [14]. A recent study claims that SMOG index should be the preferred
formula when evaluating medical materials [15]. The formula for SMOG index counts the
complex words (i.e., words that are polysyllabic) in three 10-sentence samples from documents
of n sentences, takes the square root of the sum of the count normalized by n and 30, and then
adds 3.1219 (Eq. 3.2).

SMOG Index = 1.043 ×

√
30 ×

Complex Words
n

+ 3.1219 (3.2)

The meaning of SMOG index is similar to FI—the index indicates the year of education re-
quired by the reader to understand the sentence. For example, a passage with a SMOG index
of 12 means that to understand it, the reader should have 12 years of academic education.

FORCAST Index

The FORCAST index was originally formulated to assess the reading skills required by dif-
ferent military jobs without focusing on running narratives [16]. However, the index, unlike
many other formulas, uses a single yet significant vocabulary element—the count of simple
words (i.e., monosyllabic words). Due to its relative ease of use, the index was applied to write
understandable publications by the U.S. Air Force. Eq. 3.3 is used to give the FORCAST index
of any document.

FORCAST Index = 20 −
N
10

(3.3)

where N is the number of monosyllabic words in a 150-word sample of the text. The index,
like many other formulas, indicates the grade level of the reader required to understand the
content of the text.

Flesch-Kincaid Readability Index (FKRI)

A second instalment of a readability index proposed by Flesch and further investigated and
modified by Kincaid [17] eventually took the form of Eq. 3.4.
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Figure 3.2: Experimental Procedure

FKRI = 0.39 ×
(

Total Words
Total Sentences

)
+ 11.8 ×

(
Total Syllables

Total Words

)
− 15.59 (3.4)

The score, like the other indexes, corresponds to a grade level. However, it correlates inversely
with FRES due to different weighting factors. For example, a FKRI score of 10.1 would in-
dicate that the text is anticipated to be understandable by any student studying in grade 10.
Conversely, in the case of FRES, this score would indicate it as a low-readable text. Another
key difference between them is that FKRI defines the lowest possible grade level score in the-
ory, which is −3.40, although very few real-life passages comprise a single one-syllable word.

3.3 Methodology
In this section, we describe the dataset of 24 full texts, the experimental procedures and perfor-
mance evaluation measures that we used in our experiment.

3.3.1 The Dataset
FI was successfully established as a core measure for text denoising in [2]. The trial used 24
biomedical texts as a test dataset divided into four sets. Each set describes one pair of concepts
related with an explicit disease-chemical component relation reported by Perez-Iratxeta et al.
[12]. The pairs of concepts are Ischemia-Glutamate, Ataxia-Dehydrogenase, Hypogonadism-
Gonadotropin, and Epilepsy-GABA. In the experiment reported in this paper, we used the same
dataset—providing the means to have a fair comparison. Key characteristics of the dataset are
as follows:

• The texts have been randomly collected from PubMed paper repository2 that can be
described by the four concept pairs mentioned above.

2http://www.ncbi.nlm.nih.gov/pubmed/
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• Texts have been preprocessed. For example, several sections of the texts like title, affili-
ations, tables, figures, acknowledgments, and references have been removed.

• Document size in terms of number of words varies.

Several annotation tasks for the dataset are still being carried out. However, for this exper-
iment, we only needed the pre-processed full texts.

3.3.2 Procedure
The experimental procedure is shown in Figure 3.2. In our experiment, we followed the pro-
cedure described by Shams and Mercer [2] as shown in Figure 3.1, except that we used four
different readability formulas other than the FI. The four formulas were applied one at a time
on every sentence of the texts to provide each with a readability score. The sentences were then
ranked based on this score. From these ranked sentences, 30% of the low-readable sentences
were considered. Then, we used a co-occurrence frequency matrix (also known as association
matrix) to find out the most frequently co-occurred concepts in the texts of which the 20 most
frequent pairs were selected.

However, among these selected pairs of concepts, some lack representativeness (i.e., they
do not hold any relation according to UMLS semantic relation network). These are called
noisy pairs of concepts and needed to be removed. Because we randomly collected texts, we
observed that it is possible for the pairs to never co-occur in a sentence which indicates that
our data set is imbalanced. So, we used the equally weighted harmonic mean of the PPV and
sensitivity of the pairs of concepts provided by FI to evaluate their representativeness as it is a
great evaluation metric for imbalanced dataset [18].

PPV3 is the proportion of correctly predicted relations and sensitivity is the proportion of
relevant relations that are identified by our method. To measure these values, we considered
the number of sentences extracted by the formulas which is the total number of results returned
by the tool (R) that comprises the number of True Positives (TP) and False Positives (FP).
Then, we took each pair in our co-occurrence frequency matrix and developed a second set of
sentences that contain both the concepts. The number of sentences in this set is the number
of results that should have been returned by our system (S) and comprises the number of True
Positives (TP) and False Negatives (FN). The number of sentences that are present in both
of these sets is the number of TP. Afterwards, FP is obtained by subtracting TP from R and
FN is obtained by subtracting TP from S. So, the PPV of every pair of connected concepts is

TP
TP+FP and the sensitivity of every pair of connected concepts is TP

TP+FN . Eq. 3.5 is then used to
determine the equally weighted harmonic mean for the given pair of concepts. In this way, we
measured this mean for every pair of concepts in our co-occurrence matrix.

Harmonic Mean of PPV and Sensitivity = 2 ×
(
PPV × Sensitivity
PPV + Sensitivity

)
(3.5)

These pairs are then re-ranked based on each of their PPV and sensitivity. From these re-
ranked list, top 10 pairs of concepts were considered as the related concepts of the texts. As

3Similar to F-Score, Precision, and Recall but their use in Information Retrieval and Classification is different.
The terms PPV and Sensitivity have been used to avoid confusion with the evaluation terminology.
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FI SMOG FKRI FRES FORCAST
Related Concepts Rank Harmonic Rank Harmonic Rank Harmonic Rank Harmonic Rank Harmonic

Mean Mean Mean Mean Mean
Ischemia-Glutamate 1 51.85 1 51.85 1 51.85 2 39.13 1 48.15
Levels-Glutamate 3 41.66 3 41.66 3 41.66 3 37.50
Glutamate-Neurons 4 39.02 4 39.02 4 39.02
10Min-Ischemia 5 37.50 5 37.50 5 37.50 1 48.14 6 29.16
Glutamate-CA4 6 35.89
Increase-Glutamate 7 32.55 6 32.55 6 32.55 4 32.55
Ischemia-5Min 9 31.57 8 31.57 5 31.57
Ischemia-DG 4 39.02
Glutamate-Microdialysis 3 37.50
Neurons-Ischemia 8 22.22
CA1-Ischemia 9 15.78
Glutamate-Release 6 27.77
Levels-Ischemia 2 43.47 2 43.47 2 43.47 2 39.93
10Min-Glutamate 8 31.81 7 31.81 7 31.81 4 32.55 8 27.27
Glutamate-5Min 9 31.57 8 31.57 5 31.57
Ischemia-Release 6 32.55 10 15.00
Experiment-Ischemia 9 27.77 7 27.77
Glutamate-Experiment 9 27.77 7 27.77
10Min-Release 5 31.57
Increase-Ischemia 7 23.80

Table 3.1: Relations extracted using the readability formulas from the papers on Ischemia and
Glutamate

we have these 10 pairs of concepts per set of texts by each of the formulas, we divided them
into two groups— (i) the first group contained the pairs of concepts that were reported to be
related by UMLS semantic relation network; (ii) the second group was composed of pairs of
concepts that do not have any semantic relation. The more pairs of concepts extracted using a
readability formula in the first group, the better its performance is.

3.3.3 Evaluation Measures
Our evaluation of the readability forumlas is twofold. First, we are interested in knowing the
number of meaningful pairs of concepts extracted using each of the formulas. The concepts
in the tables 3.1–3.4 are divided into two segments. The upper segment of the table contains
the first group of concepts while the lower segment of the table has concepts that belong to the
second group.

Moreover, as we are motivated to see whether the four formulas can be used as core mea-
sures of text denoising, we evaluated the performances of the formulas against a gold standard.
As FI is already proved to be an effective measure for text denoising, we considered the perfor-
mance of FI as our gold standard. We considered the related concepts extracted using FI as the
positives and examined the true positives, false positives and false negatives of a given formula,
and calculated its precision and recall. In addition, we calculated both micro and macro aver-
age of precision and recall and hence the F-Score of every formula (Table 3.6). We calculated
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FI SMOG FKRI FRES FORCAST
Related Concepts Rank Harmonic Rank Harmonic Rank Harmonic Rank Harmonic Rank Harmonic

Mean Mean Mean Mean Mean
Friedreich-Ataxia 1 59.25 1 66.66 1 59.25 1 59.25 1 51.85
PDHC-Ataxia 2 56.00 2 56.00 2 56.00 3 48.00 3 39.99
Activity-Friedreich 3 43.47 6 43.47 3 43.47 7 34.78 2 43.47
Patients-Ataxia 3 43.47 3 52.17 3 43.47 2 52.17 5 34.78
Activity-Ataxia 3 43.47 6 43.47 3 43.47 7 34.78 2 43.47
PDHC-Friedreich 3 43.47 6 43.47 3 43.47 7 34.78 5 34.78
Patients-Friedreich 6 36.36 5 45.45 5 45.45
Activity-PDHC 6 37.03 4 37.03
Preparations-Ataxia 4 40.00 7 40.00 4 40.00 6 40.00
Preparations-Friedreich 4 40.00 7 40.00 4 40.00 6 40.00
Pyruvate-Ataxia 5 38.09 4 47.61 5 38.09 4 47.61 6 28.57
Siblings-Ataxia 7 22.22
Disease-Pyruvate 8 21.05

Table 3.2: Relations extracted using the readability formulas from the papers on Ataxia and
Dehydrogenase

the micro average as we have large number of sentences that differ from one set to the other as
well as the macro average to see how the formulas performed across all sets [19]. To calculate
the micro average, the true positives, false positives and false negatives were added up across
every set first that are used to compute the statistics. On the other hand, the macro average was
calculated by calculating the precision and recall for each instance first that is averaged over
all instances in the reference standard.

3.4 Results and Discussion
From Table 3.1, interestingly both FI and FKRI as text denoising measures extracted seven
pairs of relations, from texts on Ischemia and Glutamate. On the other hand, each of the rest
of the formulas extracted five relations. Between FI and FKRI, the prior performed slightly
better than the latter as most of its top-ranked pairs were semantically related. Similarly, on
the other hand, SMOG performed marginally better than FRES and FORCAST as most of its
meaningful relations had low harmonic mean. It is noteworthy that the ranks and harmonic
means of the relations for the first three formulas were somewhat similar to each other—means
that they extracted almost the same sentences.

In Table 3.2, the relations extracted using the formulas from the papers on Ataxia and
Dehydrogenase are displayed. It is surprising that all of the formulas extracted exactly seven
meaningful relations. In this case, the performance of FI and FKRI were almost identical. On
the other hand, both SMOG and FRES extracted the same related concepts like FI but their
harmonic means largely differed. Careful observations sustain that FI and SMOG performed
best in this case followed by FKRI and FRES.

Table 3.3 displays the relations extracted by the readability formulas from the papers on
Hypogonadism and Gonadotropin. Again, FI, FKRI, SMOG, and FORCAST each extracted
eight pairs of concepts that are semantically related. However, FI, like the previous cases,



www.manaraa.com

Chapter 3. 28

FI SMOG FKRI FRES FORCAST
Related Concepts Rank Harmonic Rank Harmonic Rank Harmonic Rank Harmonic Rank Harmonic

Mean Mean Mean Mean Mean
AAS-Treatment 1 29.41 1 29.41 1 32.35 1 23.52 1 29.41
AAS-Testosterone 3 18.46 6 15.38 3 18.46 3 24.61
Gonadotropin-Treatment 4 18.18 2 18.18 4 18.18 2 21.21 8 12.12
Testosterone-Treatment 5 14.92 8 14.92 5 17.91 3 17.91 9 11.94
Levels-Testosterone 6 14.49 3 17.39 7 14.49 10 11.59
AAS-Conditions 7 12.90
Treatment-HCG 7 12.90 9 12.90 8 12.90 6 12.90
Treatment-Therapy 7 12.90 5 16.12 6 16.12 4 16.12 6 12.90
Gonadotropin-Testosterone 8 14.92 9 11.94 5 14.92
Clomiphene-Citrate 4 24.32
Tamoxifen-Citrate 5 20.28
Use-AAS 2 21.62 4 16.21 2 18.91 8 10.81 2 27.02
Replacement-Therapy 7 12.90
AAS-Conditions 8 12.90
Testosterone-Production 7 15.15
Function-Testosterone 7 12.30
Therapy-Gonadotropin 9 10.00
Function-Testosterone 10 9.67
Therapy-Testosterone 7 12.69

Table 3.3: Relations extracted using the readability formulas from the papers on Hypogonadism
and Gonadotropin

performed the best as it has most of its higher ranked pairs semantically related. FKRI and
SMOG performed almost similar and better than FORCAST that gave many concepts a low-
rank though they are semantically related. The performance of FRES is the poorest among the
five as it extracted four pairs of concepts without semantic relations.

Table 3.4 shows the related concepts extracted using the formulas from the papers on
Epilepsy and GABA. FI outperformed others by extracting seven semantically related con-
cepts. FKRI, SMOG, and FRES extracted five related concepts each but the performance of
FKRI is better than the other two. Between SMOG and FRES, most of the low-ranked pairs of
concepts extracted using the prior lack meaning than the latter. On the other hand, FORCAST
performed really poor in this case by extracting only two semantically related pairs.

Table 3.5 displays the performance of the four readability formulas—FKRI, SMOG, FRES,
and FORCAST—against the gold standard. From the table, it can be seen that the performance
of FKRI and SMOG was consistent throughout the four sets of papers. For all sets of papers,
either of the formulas had the best F-Score. On the other hand, the F-scores of FRES and
FORCAST largely varied for the papers and either of them had the lowest F-Score.

Table 3.6a displays that SMOG index had the best F-Score of 88.46% and it was more
precise than the others. However, FKRI showed the best recall followed by SMOG index. On
the other hand, FRES and FORCAST had identical precision and recall but their significanly
poor recalls cost them lower F-Scores. Information on Table 3.6b shows similar results except
that both SMOG index and FKRI achieved the best recall. From this analysis, it can be said
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FI SMOG FKRI FRES FORCAST
Related Concepts Rank Harmonic Rank Harmonic Rank Harmonic Rank Harmonic Rank Harmonic

Mean Mean Mean Mean Mean
Inhibition-GABA 1 26.08 1 28.16 1 34.78 1 34.78 1 23.91
GABA-Synapse 2 20.25 2 20.25 2 22.78 2 20.25
Neurons-Synapse 3 14.17 4 14.70 3 14.70 5 11.76
Inhibition-Hippocampus 4 12.30 4 10.66
Neurons-GABA 6 8.00 3 16.00 6 10.66
Properties-GABA 7 6.45 7 9.67 5 9.67 7 9.67
Cl-Gradient 9 3.33
Inhibition-Dentate Gyrus 6 9.37
Synapse-Change 5 9.37 8 9.37 7 9.37 4 12.50
GABA-Change 7 6.45 7 9.67 9 6.45
GABA-Number 8 6.34 5 12.69 6 9.52 8 9.52
Synapse-Number 8 6.55
Neuron-Input 9 6.45
Animal-Models 6 11.26 3 14.08
Neurons-Inhibition 7 9.67
GABA-Alteration 3 18.18
Study-Tissue 9 9.37
Study-Inhibition 10 8.95
Rat-Inhibition 2 20.51
Slices-Inhibition 4 12.50
Animal-Rat 5 12.30
Cortex-slices 7 9.09
Epilepsy-Rat 8 8.95
Inhibition-Kindling 8 8.95
Number-Tissue 9 6.45

Table 3.4: Relations extracted using the readability formulas from the papers on Epilepsy and
GABA

that SMOG index and FKRI are both performing similar to FI and thus can be used to reduce
textual noise and extract related biomedical concepts.

3.5 Conclusions
While FI has been used in text denoising to make it a meaningful relations extraction tool
for biomedical texts, we reported the performance of four other readability formulas, namely
FKRI, SMOG, FRES, and FORCAST on this task. We applied the formulas to the sentences of
24 biomedical texts, ordered them according to their reading difficulty, and extracted frequently
co-occurred concepts from the 30% of the low-readable sentences. These concepts were then
re-ranked according to the harmonic mean of their PPV and sensitivity. A comparative result
shows that FI outperformed the other formulas by extracting more meaningful relations accord-
ing to UMLS semantic relation network. We also analyzed the performance of the formulas
considering the performance of FI as a gold standard. It shows that SMOG index achieved the
best F-Score followed by FKRI while FRES and FORCAST performed poorly. It can also be
noted that SMOG index, like FI, uses the core measure of complex words and its performance
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Readability
Formula

Precision Recall F-Score

SMOG 100.00 71.43 83.33
FKRI 85.71 85.71 85.71
FRES 40.00 28.57 33.33
FORCAST 100.00 71.43 83.33

(a)

Readability
Formula

Precision Recall F-Score

SMOG 100.00 100.00 100.00
FKRI 85.71 85.71 85.71
FRES 100.00 100.00 100.00
FORCAST 85.71 85.71 85.71

(b)

Readability
Formula

Precision Recall F-Score

SMOG 87.50 87.50 87.50
FKRI 87.50 87.50 87.50
FRES 83.33 62.50 71.43
FORCAST 75.00 75.00 75.00

(c)

Readability
Formula

Precision Recall F-Score

SMOG 100.00 71.43 83.33
FKRI 100.00 71.43 83.33
FRES 100.00 71.43 83.33
FORCAST 50.00 14.29 22.22

(d)

Table 3.5: Performance of the four readability formulas for the papers on (a) Ischemia and
Glutamate, (b) Ataxia and Dehydrogenase, (c) Hypogonadism and Gonadotropin (d) Epilepsy
and GABA

Readability
Formula

Precision Recall F-Score

SMOG 95.83 82.14 88.46
FKRI 88.89 82.76 85.71
FRES 82.61 65.52 73.08
FORCAST 81.82 62.07 70.59

(a)

Readability
Formula

Precision Recall F-Score

SMOG 96.88 82.60 89.16
FKRI 89.73 82.60 86.01
FRES 80.83 65.63 72.44
FORCAST 77.88 61.61 68.72

(b)

Table 3.6: Average precision, recall and F-Score of the formulas with (a) micro-average and
(b) macro-average methods

is the best compared to the gold standard which reveals the fact that the measure of complex
word fits best for text denoising and biomedical relation extraction.

As for relation mining we found at least two competitive measures for text denoising other
than FI, their performances on training data reduction for keyphrase indexers can be of great
interest. This task is left as future work.
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Chapter 4

Investigating Keyphrase Indexing with
Text Denoising

This chapter is based on the paper titled “Investigating Keyphrase Indexing with Text De-
noising” co-authored with Robert E. Mercer that appeared in the 12th ACM/IEEE-CS Joint
Conference on Digital Libraries (JCDL 2012).

In this paper, we report on indexing performance by a state-of-the-art keyphrase indexer,
Maui, when paired with a text extraction procedure called text denoising. Text denoising is a
method that extracts the denoised text, comprising the content-rich sentences, from full texts.
The performance of the keyphrase indexer is demonstrated on three standard corpora collected
from three domains, namely food and agriculture, high energy physics, and biomedical science.
Maui is trained using the full texts and denoised texts. The indexer, using its trained models,
then extracts keyphrases from test sets comprising full texts, and their denoised and noise parts
(i.e., the part of texts that remains after denoising). Experimental findings show that against a
gold standard, the denoised-text-trained indexer indexing full texts, performs either better than
or as good as its benchmark performance produced by a full-text-trained indexer indexing full
texts.

4.1 Introduction

Today, most of the automatic indexers use supervised full-text classifiers to extract keyphrases
from full texts [1] [2] [3] [4]. Maui [2] is the final successor of a legacy of keyphrase indexers
and inherits from and builds upon both of its predecessors KEA [4] and KEA++ [3]. To extract
keyphrases from test documents, Maui uses 13 features to develop its supervised classifier.
However, a revealing experiment by Witten et al. [4] demonstrates that indexer performances
depend not only on the set of features but also on document size. As they apply their full-text
trained KEA on paper abstracts and compare against a gold standard, they find its performance
on these reduced texts somewhat inferior and not competitive to that on full texts. Although
Maui outperforms its predecessors to extract full-text keyphrases from food and agriculture,
nuclear physics, and biomedical science texts [2], it has not been tested with a reduced set of
texts till date.

Text Denoising is a method proposed by Shams and Mercer [5] which reduces the amount
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of text in biomedical papers to 30% of the original. The authors suggested that the describing
of biomedical relations lengthens sentences and increases the use of polysyllabic words. Some
readability indexes, the Fog Index [6] in particular, are based on these two factors. They
proceeded to use Fog Index to measure sentence readability and showed experimentally that
the 30% of the sentences which had the lowest-readability, the denoised part of a text, contained
the relations of interest. The rest is termed as noise text that are not as content-rich as denoised
text.

In this paper, we report on the performance of a state-of-the-art keyphrase indexer named
Maui [2] when paired with text denoising. We use three standard full-text corpora from the
food and agriculture, nuclear physics, and biomedical science domains. From each corpus, we
develop training sets comprising full texts and their denoised parts. The test sets are composed
of full texts, and their denoised and noise parts. For training and testing each dataset, we use a
standard 10-fold cross validation. We show experimentally that a 70% text denoising improves
Maui’s indexing performance. To evaluate Maui, we use quantitative measures like precision,
recall and F-score, as well as qualitative measures like inter-indexer agreements. Experimen-
tal results show that Maui, trained with denoised texts, performs either better or compara-
bly to its benchmark performance—those with full-text trained models to extract keyphrases
from full-text test sets. Further details about this paper can be found in its full version at
arXiv:1204.2231v1 [cs.DL].

The remainder of this paper discusses the methods for training and testing the indexer
(Section 4.2), an analysis of the results (Section 4.3), and ends with some concluding remarks
(Section 4.4).

4.2 Methodology

In this section, we describe the datasets, training and testing procedure, performance measures,
and the means to find the appropriate text denoising threshold for keyphrase indexing.
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Figure 4.1: Error rates for different denoising thresholds with FAO-780 (a) denoised texts and
(b) noise texts
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Figure 4.2: Error rates for different denoising thresholds with CERN-290 (a) denoised texts
and (b) noise texts
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Figure 4.3: Error rates for different denoising thresholds with NLM-500 (a) denoised texts and
(b) noise texts

4.2.1 Datasets

To train and test Maui, we use three standard corpora of full texts and keyphrases associated
with them. Among the datasets are FAO-780 which comprises 780 full texts from food and
agriculture; CERN-290 which is composed of 290 high energy physics documents; and NLM-
500 which has 500 biomedical research articles. The details about these datasets can be found
in the doctoral thesis by Medelyan [2].

4.2.2 Training and Testing

In this experiment, we use a conventional stratified k-fold experimental approach set by Medelyan
[2] except that we train Maui not only on full texts but also on their denoised parts and test it on
full texts as well as their denoised and noise parts. We consider the full texts along with their
denoised and noise parts from each dataset and divide them randomly into 10 equal-sized folds
without overlap. We train Maui on the training sets comprising full texts and denoised texts
from each fold. The models that the indexers develop from full texts are called full-text trained
models and those that are developed from denoised texts are called denoised-text trained mod-
els. The indexer then applies these models, k-th full-text trained model and k-th denoised text
trained model, to extract keyphrases from the k-th test set composed of full texts, and their
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Benchmark Performance
Trained Model Test Set Precision Recall F-score Precision Recall F-score t value
Denoised Text Denoised Text 30.02 32.92 31.36

30.56 33.47 31.86
2.23

Denoised Text Full Text 30.49 33.50 31.87 2.76
Full Text Denoised Text 30.48 32.96 31.63 1.81

(a) Maui’s performance on FAO-780 dataset with denoising level of 70% of each text

Benchmark Performance
Trained Model Test Set Precision Recall F-score Precision Recall F-score t value
Denoised Text Denoised Text 24.38 25.33 24.79

24.58 25.56 24.99
2.16

Denoised Text Full Text 23.99 24.95 24.42 2.26
Full Text Denoised Text 24.38 25.40 24.82 1.31

(b) Maui’s performance on CERN-290 dataset with denoising level of 70% of each text

Benchmark Performance
Trained Model Test Set Precision Recall F-score Precision Recall F-score t value
Denoised Text Denoised Text 29.14 32.36 30.66

29.69 32.74 31.13
2.01

Denoised Text Full Text 29.96 33.22 31.50 3.52
Full Text Denoised Text 28.99 32.00 30.40 1.85

(c) Maui’s performance on NLM-500 dataset with denoising level of 70% of each text

Table 4.1: Precision, recall and F-score of Maui with text denoising

denoised and noise parts. According to the average number of keyphrases in every document,
we had the indexers extract 8 keyphrases, 7 keyphrases, and 15 keyphrases for each document
in the FAO-780, CERN-290, and NLM-500 test sets, respectively. The extracted keyphrases
are then compared against a gold standard which are the author-assigned keyphrases associated
with the test documents.

4.2.3 Performance Measures
In this experiment, as well as conventional quantitative performance measures like precision,
recall and F-score, we use three inter-indexing agreement measures popularly used for qual-
itative indexing assessment [7], namely Hooper’s (H) [8], Rolling’s (R) [9] and Cosine (C)
inter-indexing agreements. The closer the agreement measures are to 1, the more the indexers
agree on extracted keyphrases. We also calculate the error rates for each cross validation to
find a text denoising threshold described in Section 4.2.4 and measure a 10-fold cross vali-
dated paired t-test [10] to report statistical significance of Maui’s indexing when paired with
denoised texts. For any two given sets of results, we consider their error rates to calculate a
paired t-value. If this calculated t-value lies outside ±2.26 with a degree of freedom 9, then the
difference between the set whose results have the lower error rate and the other set is said to be
statistically significant at significance level α = 0.05.

4.2.4 Text Denoising Threshold
To find the appropriate text denoising threshold for keyphrase indexing, we evaluate Maui’s
performance on each dataset by increasing the text denoising threshold in increments of 10%
from 30% to 90%. As we vary the threshold, we plot the error rates of Maui on different test
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Benchmark Performance
Trained Model Test Set Hooper Rolling Cosine Hooper Rolling Cosine
Denoised Text Denoised Text 0.18 0.29 0.30

0.18 0.30 0.31Denoised Text Full Text 0.18 0.30 0.31
Full Text Denoised Text 0.18 0.30 0.30

(a) Maui’s indexing agreements on FAO-780 dataset with denoising level of 70% of each text

Benchmark Performance
Trained Model Test Set Hooper Rolling Cosine Hooper Rolling Cosine
Denoised Text Denoised Text 0.14 0.24 0.24

0.14 0.24 0.24Denoised Text Full Text 0.14 0.24 0.24
Full Text Denoised Text 0.14 0.24 0.24

(b) Maui’s indexing agreements on CERN-290 dataset with denoising level of 70% of each text

Benchmark Performance
Trained Model Test Set Hooper Rolling Cosine Hooper Rolling Cosine
Denoised Text Denoised Text 0.18 0.30 0.30

0.18 0.30 0.31Denoised Text Full Text 0.19 0.31 0.31
Full Text Denoised Text 0.18 0.30 0.30

(c) Maui’s indexing agreements on NLM-500 dataset with denoising level of 70% of each text

Table 4.2: Inter-indexing agreements of Maui with text denoising

sets. Being a supervised indexer, Maui’s best-fit model should be where the test error has its
global minimum. That point eventually will also be the denoising threshold.

The error rates for different denoising thresholds for FAO-780 are plotted in Figure 4.1.
It is notable that for both trained models, Maui has its global minimum at 70% denoising
(Figure 4.1a). From this point on, the error rate increases and thus indicates an overfitting in
Maui’s models. Figure 4.1 shows that Maui’s best performing pair is Denoised-Full—those
models that are trained with denoised texts for keyphrase extraction from full texts. Similarly,
Maui’s best-fitted models with denoised texts for CERN-290 and NLM-500 are also at the 70%
threshold (Figure 4.2a and 4.3a). Figure 4.1b, 4.2b, and 4.3b, on the other hand, show that the
error rate for the noise test sets increases. This indicates that noise texts are less content-rich as
Maui fails to extract a substantial number of keyphrases from them. These observations lead us
to set the denoising threshold at 70%. At this threshold, Maui predicts keyphrases from unseen
test examples most accurately.

4.3 Results and Discussions

In this section, we discuss the performance of Maui with text denoising and compare this with
its benchmark performance—full-text trained model on full texts.

Table 4.1a compares the precision, recall and F-score of Maui with denoised texts and its
benchmark performance on the FAO-780 dataset. Maui, using its denoised-text and full-text
trained models on denoised text test sets, achieves F-scores of 31.36 and 31.63, respectively,
compared to its benchmark F-score of 31.86. We see that for these two cases, the t-values
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are 2.23 and 1.81, respectively, which means that the differences between the F-scores are
not statistically significant. In other words, the benchmark performance of Maui cannot be
said to be different than that with text denoising. On the other hand, Maui’s F-score with its
denoised text trained model on full-text keyphrase extraction is 31.87 with a t-value of 2.76.
So, with 98% confidence we can say that the result is better than the benchmark performance.
In addition, from Table 4.2a, we can see that Maui’s agreements with the gold standards are as
good as the benchmark agreements. This demonstrates that the indexing quality of Maui has
not been compromised with text denoising.

For the CERN-290 dataset, although Maui could not outperform its benchmark F-score
of 24.99, none of the t-values are significant at α = 0.05. In other words, its performance
with denoised texts cannot be said to be different than its benchmark performance with a 95%
confidence level (Table 4.1b). Interestingly enough, although Maui agrees less with the gold
standard for the CERN-290 dataset than that for FAO-780, its agreements on keyphrases with
denoised texts are as good as its benchmark performance (Table 4.2b).

Maui’s best performance for the NLM-500 corpus is with a denoised text trained model on
full texts. Its F-score of 31.50 outperforms the benchmark F-score of 31.13 at the significance
level of α = 0.05. However, although its other two F-scores with denoised texts is somewhat
lower than its benchmark F-score, they are not statistically significant with t-values of 2.01
and 1.85 (Table 4.1c). Maui’s inter-indexing agreement on NLM-500 is somewhat similar to
that on FAO-780 except that it agrees more with NLM-500 gold standards than its benchmark
performance (Table 4.2c).

4.4 Conclusions

In this paper, we show that a 70% text denoising improves Maui’s performance for the biomed-
ical science texts, or it allows Maui to perform as good as its benchmark performance on the
food and agriculture, and the physics texts. Although there are some cases where Maui, when
paired with text denoising, experiences marginally lower F-score than its benchmark, indexing
agreement measures show that its indexing quality has never been compromised; it extracts
even better quality keyphrases from biomedical texts than its benchmark. From the experimen-
tal findings, we also can conclude that document size, per se, does not have the suggested effect
on keyphrase indexing, rather it is the content richness that plays the key role in indexing. We
leave the investigation on the effect of text denoising paired with other indexers as future work.
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Chapter 5

Improving Supervised Keyphrase Indexer
Classification of Keyphrases with Text
Denoising

This chapter is based on the paper titled “Improving Supervised Keyphrase Indexer Classifica-
tion of Keyphrases with Text Denoising” co-authored with Robert E. Mercer that appeared in
the 14th International Conference on Asia-Pacific Digital Libraries (ICADL 2012).

In this paper, we show that two state-of-the-art supervised keyphrase indexers named KEA
and KEA++, when paired with text denoising, induce improved keyphrase classifiers. The
classifiers’ performances are demonstrated on three standard full-text corpora collected from
the food and agriculture, nuclear physics and biomedical domains. Using the denoised parts
of the texts, the indexers induce keyphrase classifiers that are later used for full-text keyphrase
extraction. Experimental results show that against a gold standard these classifiers perform
better than those induced from full texts.

5.1 Introduction

The retrieval of appropriate documents from digital libraries becomes easier and more effi-
cacious with the keyphrases assigned to them. In addition, when a document is properly
meta-tagged with keyphrases, its accessibility increases because it is more likely to be cited
by others. Often, authors assign keyphrases to their documents manually. This manual index-
ing has some drawbacks such as poor choice of keyphrases [1]. As a consequence, an array
of automatic keyphrase indexers has been developed. Some examples are supervised index-
ers that induce classifiers from full texts and apply them to extract keyphrases from unseen
documents [2] [3] [4] [5] [6], among many.

Besides the choice of learning algorithm and set of features, an indexer’s predictive accu-
racy depends on the document size [6]. For instance, when the keyphrases extracted from paper
abstracts by the Keyphrase Extraction Algorithm (hereinafter, KEA) with its classifier induced
from full texts [6] are compared against a gold standard, its performance is found somewhat
inferior and not competitive to that on full texts. Since this result, researchers have sidelined
the task of improving indexing performance using a set of reduced texts. Recently, Shams and
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Mercer [7] investigate the performance of a supervised indexer called Maui [3] by reducing
its training data. Their experimental findings show that on biomedical texts, Maui generates a
superior classifier with a text reduction method called Text Denoising. This work complements
that investigation with two more indexers whose supervised classifiers work differently than
that of Maui, and thus shows increased effectiveness of text denoising in this domain.

Text Denoising is a heuristic-based text extraction method. It reduces the amount of text
in biomedical papers based on sentence readability [8]. The hypothesis behind this heuristic
method is—the more difficult a sentence is to read, the more content-rich it is. The approach
uses the Fog Index readability score [9] to rank the sentences of a text. Among these sentences,
it then selects those that are the most difficult to read. This selected part of the text is called the
denoised text and the remainder is called the noise text. This introductory work demonstrates
that the denoised texts contain most of the biomedical relations of a corpus. Later, an investi-
gation is pursued to observe the effect of text denoising on keyphrase indexing [7]. The authors
conclude that text denoising can be used as an indicator of the content-rich parts of texts not
only for relation mining but also keyphrase indexing.

In this paper, we show that rather than simply increasing the amount of training data, su-
pervised keyphrase indexing can be improved by selectively reducing the training data to high
quality sentences. We demonstrate that the keyphrase classifier performance of two state-of-
the-art keyphrase indexers named KEA [1] [6] and KEA++ [4] improves if induced from texts
reduced by the text denoising method. We use three standard full-text corpora from the food
and agriculture, high energy physics, and biomedical science domains. The indexers induce
their keyphrase classifiers from the denoised texts of each corpus. These classifiers are then
used to extract keyphrases from full test documents. To evaluate the indexing performances, we
use a standard 10-fold cross validation. As performance measures, we use standard quantitative
measures like precision, recall, and F-score as well as quality indicators like indexing agree-
ments. Experimental results show that the performances of the keyphrase classifiers induced
from denoised texts are significantly better than their benchmarks achieved using keyphrase
classifiers induced from full texts.

The remainder of this paper provides background on text denoising and the indexers (Sec-
tion 5.2), discussions on the methods for training and testing the indexers (Section 5.3), an
analysis of the results (Section 5.4), and ends with some concluding remarks (Section 5.5).

5.2 Background

In this section, we briefly discuss the text denoising method followed by KEA and KEA++.

5.2.1 Text Denoising
In their paper, Witten et al. [6] have demonstrated that the performance of KEA has been re-
duced when extracting keyphrases from paper abstracts. Similarly, the performance of biomed-
ical relation miners that attempt to extract relations among drugs, chemicals, diseases, genes
and proteins from paper abstracts is poor enough that a number of biomedical ontologies like
OMIM (Online Mendelian Inheritance in Man) and GO (Gene Ontology) use human annotators
to extract relations from full texts, a time-consuming and error-prone procedure. To overcome
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these shortcomings, Shams and Mercer [8] proposed a method to identify those areas within
a text, called denoised text, where content information, such as biomedical relations, is more
likely to occur. The authors suggested that the describing of biomedical relations lengthens
sentences and increases the use of polysyllabic words. Some readability indexes, the Fog In-
dex [9] in particular, are based on these two factors. They proceeded to use the Fog Index to
measure sentence readability and showed experimentally that the 30% of the sentences which
had the lowest-readability, the denoised part of a text, contained the relations of interest.

Therefore, by setting the denoising threshold at 30% (i.e., by keeping the 30% of the most
difficult-to-read sentences), text denoising has been evaluated with a corpus comprising 24
full texts that describe four related pairs of disease and chemical components. This method
extracted pairs of biomedical concepts from the denoised part of the texts of which about 75
percent are reported as related according to the Unified Medical Language System’s (UMLS)
semantic relations network. It is noteworthy that the rest of the text, called noise text, did not
contain any related biomedical concepts of interest.

5.2.2 The Keyphrase Indexers

KEA [6] is a supervised keyphrase indexer that induces Naı̈ve Bayes classifiers using three fea-
tures, namely tf-idf, first occurrence, and keyphraseness. When tested with the Computer Sci-
ence Technical Reports (CSTR) corpus of NZDL, KEA performed reasonably well on domain-
specific documents [1]. In their paper, Witten et al. [6] outlined some important aspects of
keyphrase indexing, with or without a set of reduced texts: (i) keyphrases assigned by authors
(also regarded as the gold standard) that are absent in the document affect indexer accuracy;
(ii) machine learning algorithms perform as expected; (iii) the indexer performance is not on
a par with human indexers; and (iv) reduced training data (e.g., that developed from abstracts)
decreases accuracy for full-text indexing, etc.

KEA++ [4], which inherits from and builds upon its successor KEA, adds an advantage of
using controlled vocabularies in SKOS (Simple Knowledge Organization System) format as an
auxiliary source of keyphrases during the training phase. This minimized the effect of missing
author assigned keyphrases in the documents. The authors, in addition, included the length
of the keyphrases as a new feature. KEA++ was tested with corpora across different domains
like food and agriculture, biomedical science, and physics. Although the performance is not
comparable to that of English, it was also tested with French and Spanish texts. Experimental
outcomes showed that a controlled vocabulary contributes to faster indexing and an improved
accuracy over free-text indexing. The authors also credited the two new features for the no-
ticeable improvement in precision but zeroed in on improved vocabulary construction for the
better recall.

5.3 Methodology

In this section, we describe the datasets, training and testing procedure, performance measures,
and the means to find the appropriate text denoising threshold for keyphrase indexing.
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5.3.1 Datasets

To train and test KEA and KEA++, we used three standard corpora of full texts and keyphrases
associated with them. Among the datasets are: FAO-780 which comprises 780 full texts from
food and agriculture; CERN-290 which is composed of 290 high energy physics documents;
and NLM-500 which has 500 biomedical research articles. The details about these datasets can
be found in the doctoral thesis by Medelyan [3].

5.3.2 Training and Testing

In this experiment, we decided to use a conventional k-fold experimental approach (Fig. 5.1).
We divided each dataset randomly into 10 equal-sized folds without any overlap. For each fold,
we applied text denoising on the texts and kept both the full texts and their denoised parts. We
then applied a standard 10-fold cross validation to train and test the indexers.

To generate each training-testing pair, we kept one of the 10 full-text folds out as our test set
and combined the rest of the 9 folds as our training set. Doing this 10 times, each time leaving
out a different fold from the 10 folds as a test set, we generated 10 pairs. KEA and KEA++

then induced classifiers from the training sets comprising denoised texts from each fold. In
this way, they developed 10 classifiers for each dataset. The classifiers induced from denoised
texts are called denoised-text induced classifiers. The indexers then used the k-th denoised text
induced classifier to extract keyphrases from the k-th test set of full texts.

According to the average number of keyphrases in every document, we had the indexers
extract 8 keyphrases, 7 keyphrases, and 15 keyphrases for each document in the FAO-780,
CERN-290, and NLM-500 test sets, respectively. The extracted keyphrases were then com-
pared against a gold standard which are the author assigned keyphrases associated with the
test documents. The testing has been carried out for the rest of the folds and the performance
measures described in section 5.3.3 were then averaged.

Keyphrase Indexers

Denoised-Text Training Set (All but k-th Fold)

Induced Classif er (All but k-th Fold)

Full-Text Test Set (k-th Fold)

Extracted Keyphrases Gold Standard KeyphrasesCompare

Figure 5.1: Keyphrase extraction from k-th fold
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5.3.3 Performance Measures
In this experiment, we used the conventional quantitative measures for performance
evaluation—precision, recall and F-score. In addition, we used three inter-indexing agree-
ment measures popularly used for indexers’ quality assessment [10]. The measures are called
Hooper’s (H), Rolling’s (R) and Cosine (C) indexing agreements. The common property of
these measures is that they measure the number of common keyphrases in relation to the size
of the two sets of keyphrases being compared. We briefly summarize these agreement mea-
sures for the reader’s convenience. If M and N are the number of idiosyncratic keyphrases
assigned by two indexers and O is the number of phrases two indexers have in common, then
Hooper’s measure [11] is

H(indexer1, indexer2) =
O

M + N − O
.

Similarly, Rolling’s measure [12] is defined as

R(indexer1, indexer2) =
2·O

M + N
.

Cosine measure uses the geometric mean instead of Rolling’s arithmetic mean and can be
written as

C(indexer1, indexer2) =
O
√

M·N
.

The last two measures are almost identical unless the sets radically vary. It can be noted that
Hooper’s and Rolling’s measures are identical to Jaccard’s and the Dice coefficient, respec-
tively, which are used to measure similarities between two sets. The closer the agreement
measures are to 1, the more the indexers agree on extracted keyphrases.

We also calculated the error rates for every cross validation. The error rate is defined as

E =
FP + FN

N
,

where FP and FN are the number of false positives and false negatives, respectively and N
is the total number of test instances. The reasons for using the error rates are twofold: (i) to
find a text denoising threshold from the classifiers’ learning curves described in Section 5.3.4;
and (ii) to measure a 10-fold cross validated paired t-test [13] to report statistical significance
of the results. For any two given sets of results, we considered their error rates to calculate a
paired t-value. If this calculated t-value lies outside ±2.26 with a degree of freedom 9, then the
difference of these two sets is said to be statistically significant at significance level α = 0.05.

5.3.4 Text Denoising Threshold from Learning Curves
To find appropriate text denoising thresholds for keyphrase indexing, we plotted the learning
curves of the keyphrase classifiers on each dataset by increasing the text denoising threshold
in increments of 10% from 30% to 90%. Because both KEA and KEA++ induce Naı̈ve Bayes
classifiers, the best-fit classifier should be where the test error has its global minimum. There-
fore, the objective is to discover the global minimum from the learning curves. Eventually, this
global minimum is the denoising threshold for a given dataset.
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Figure 5.2: Text denoising thresholds of KEA for different datasets
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Figure 5.3: Text denoising thresholds of KEA++ for different datasets

For instance, Fig. 5.2 shows the learning curves of KEA on the three datasets for different
denoising thresholds. In the case of FAO-780, the classifier of KEA induced at 60% denoising
had the global minimum. From this point on, the error rate increased and thus indicated an
overfitting in the learning process. However, both of KEA’s best performing classifiers on
CERN-290 and NLM-500 datasets were induced at 30% denoising.

On the other hand, the best-fit classifiers induced by KEA++ with denoised texts for both
FAO-780 and CERN-290 dataset were at the 60% threshold (Fig. 5.3). In contrast, the best
performing classifier of KEA++ for NLM-500 was induced at 70% text denoising.

The classifiers induced from different datasets at the aforementioned thresholds were the
best performing and hence we applied these classifiers on test sets.



www.manaraa.com

Chapter 5. 46

Classifier Precision Recall F-Score t-value Hooper Rolling Cosine
With Text Denoising 22.17 23.96 23.03

5.07
0.12 0.20 0.21

Benchmark 19.96 21.70 20.76 0.11 0.19 0.20
(a) KEA on FAO-780 dataset with 60% of the texts

Classifier Precision Recall F-Score t-value Hooper Rolling Cosine
With Text Denoising 14.66 14.80 14.73

3.42
0.07 0.13 0.13

Benchmark 12.26 12.38 12.29 0.06 0.12 0.12
(b) KEA on CERN-290 dataset with 30% of the texts

Classifier Precision Recall F-Score t-value Hooper Rolling Cosine
With Text Denoising 14.01 15.22 14.60

4.14
0.07 0.12 0.12

Benchmark 11.65 12.85 12.21 0.06 0.11 0.11
(c) KEA on NLM-500 dataset with 30% of the texts

Table 5.1: Performance of KEA with text denoising

Classifier Precision Recall F-Score t-value Hooper Rolling Cosine
With Text Denoising 26.85 29.21 27.98

3.78
0.15 0.24 0.25

Benchmark 24.08 26.49 25.19 0.14 0.23 0.23
(a) KEA++ on FAO-780 dataset with 60% of the texts

Classifier Precision Recall F-Score t-value Hooper Rolling Cosine
With Text Denoising 23.24 23.32 23.28

2.40
0.12 0.20 0.21

Benchmark 21.04 21.15 21.04 0.10 0.18 0.18
(b) KEA++ on CERN-290 dataset with 60% of the texts

Classifier Precision Recall F-Score t-value Hooper Rolling Cosine
With Text Denoising 19.23 21.17 20.15

6.38
0.10 0.17 0.18

Benchmark 17.02 18.92 17.91 0.08 0.15 0.15
(c) KEA++ on NLM-500 dataset with 70% of the texts

Table 5.2: Performance of KEA++ with text denoising

5.4 Results and Discussions
In this section, we discuss the performances of KEA and KEA++ classifiers induced from
denoised texts and compare them with their benchmark performances.

Convincingly, on all three datasets KEA’s denoised-text induced classifier outperformed its
full-text induced classifier. For instance, Table 5.1a shows the precision, recall and F-score
of the classifier generated by KEA with and without denoised texts on the FAO-780 dataset.
KEA, with its denoised-text induced classifier applied on test sets, achieved an F-score of
23.03 compared to its benchmark F-score of 20.76. The difference of the scores was extremely
significant at α = 0.05 as we found the t-value 5.07 with a 10-fold cross validated t-test. KEA’s
convincing performance with denoised-text induced classifiers continued on the CERN-290
dataset as it achieved an F-score of 14.73 while the benchmark F-score is 12.29 (Table 5.1b).
The difference, again, was significant with a t-value of 3.42. Finally, we also found KEA, when
paired with text denoising, outperforming its benchmark performance on NLM-500 dataset.
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For this dataset, KEA’s F-score with denoised-text and full-text induced classifiers were 14.60
and 12.21, respectively. The t-value, for this case, was 4.14 showing that the improvement is
statistically significant (Table 5.1c).

All of its agreement measures—Hooper, Rolling and Cosine—indicate that KEA’s ex-
tracted keyphrases with this setup agree more with the gold standard than do the benchmark
keyphrases (Table 5.1a–5.1c). Although the difference is small, the values show that KEA’s
quality keyphrase extraction has not been compromised on any of the datasets, rather it im-
proved on every occasion.

KEA++ performed even better than KEA on the datasets with its reduced-data induced
classifiers. For instance, Table 5.2a shows that KEA++, when paired with text denoising,
outperformed its benchmark F-score of 25.19 on the FAO-780 dataset. A 3.78 t-value indicates
this improvement as statistically significant at α = 0.05. Convincing results are found on the
CERN-290 dataset where KEA++ with our setup achieved an F-score of 23.28. Compared to
that of its benchmark F-score of 21.04, this was significantly better with t = 2.40 (Table 5.2b).
Finally, also on the NLM-500 dataset, text denoising helped KEA++ to achieve a significantly
better performance with a 20.15 F-score compared to its benchmark F-score of 17.91 (Table
5.2c).

Interestingly, extracted keyphrases of KEA++’s denoised-text induced classifier agree more
with the gold standard than do the key phrases extracted by its benchmark classifier. For
instance, on FAO-780 dataset, its Hooper, Rolling and Cosine scores were 0.15, 0.24, and 0.25
respectively compared to the benchmark scores of 0.14, 0.23, and 0.23 (Table 5.2a). This trend
of producing quality keyphrases by KEA++ with our setup can also be seen for the rest of the
datasets as well (Table 5.2b and 5.2c).

It can be noted that although we got better results by reducing the training data, it is unlikely
to achieve a similar result by reducing the test data. For instance, as we extracted keyphrases,
using both the full-text and denoised-text induced classifiers, from denoised texts of the cor-
pora, we did not find any global minima for them (as seen in Fig. 5.2 and Fig. 5.3) and thus
found no improvement of the performances over the benchmark.

5.5 Conclusions

In this paper, we describe how reducing the content of the texts collected from different do-
main to high-quality sentences with text denoising can influence supervised keyphrase index-
ing. We use established techniques like 10-fold cross validation to measure the performances
of two well known keyphrase indexers named KEA and KEA++. Using performance mea-
sures like precision, recall and F-score we evaluate their extracted keyphrases against the gold
standards provided (author assigned keyphrases). Experimental outcomes show an improved
performance with denoised text for extraction training and application to the full text. Accord-
ing to the different indexing agreement measures, the indexers improve on producing quality
keyphrases as well.

From our experimental findings we can also conclude that– (i) document size, per se, does
not have the suggested effect on keyphrase indexing—it is the content richness that plays the
key role in indexing; (ii) text denoising is useful not only for biomedical relation mining but
also for keyphrase indexing; and (iii) text denoising can be used for different domains other
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than biomedical science.
Recalling the fact of varied denoising thresholds on different datasets and tasks, we are

interested in applying machine learning techniques instead of heuristics for text denoising. In
addition, we are interested in testing the effect of text denoising on indexers selected from those
participating in Task 5 of SemEval-2010 [14]. These tasks are left as future work.
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Chapter 6

Extracting the Information-rich Part of
Text using Text Denoising

This chapter is based on the paper titled “Extracting Information-rich Part of Texts using Text
Denoising” that appeared in the 26th Canadian Conference on Artificial Intelligence (CAI-
2013). It briefly summarizes the concepts presented in Chapter 2 to 5 as well as introduces
the machine learning approach we consider in the following chapters. However, the work
accomplished in this chapter was later investigated in more detail in Chapter 10. Note that
we used the same three datasets (BioNLP [1], BioDRB [2], and FetchProt [3]) in both this
chapter and in Chapter 10, and the results reported in this chapter are better. However, the
work described in this chapter was presented at a Graduate Symposium and exhibited only a
small improvement. A much more sophisticated machine-learning approach is presented in
Chapter 10.

In this paper, we continue to report on a novel text reduction technique, called Text De-
noising, that highlights information-rich content when processing a large volume of text data,
especially from the biomedical domain. The core feature of the technique, the text readabil-
ity index, embodies the hypothesis that complex text is more information-rich than the rest.
When applied on tasks like biomedical relation bearing text extraction, keyphrase indexing
and extracting sentences describing protein interactions, it is evident that the reduced set of
text produced by text denoising is more information-rich than the rest.

6.1 Introduction

Often, to test a method’s scalability as well as its performance across genres of texts, there is
a need to process large volumes of text data in many disciplines of NLP, be it textual relation
extraction, summarization or meta-tagging. It has been reported by many researchers [4] [5]
that machine learning as well as rule-based approaches show improvements over their bench-
marks with increased training data. However, the use of large volume of data can create several
bottlenecks. One is technical—processing large data, like that from biomedical texts, slows
down many algorithms; another is even more important—algorithms can exhibit a decreased
accuracy because of the noise, which are irrelevant or redundant data for a given classification
task, added by information-poor parts of texts.

50
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There are several statistics, like word-level feature tf–idf and sentence-level feature sen-
tence position, that help identify information richness. Although the degree of use shows their
popularity, these features have some serious limitations. For example, tf–idf computes docu-
ment similarity directly in the word-count space which may be slow for large vocabularies and
sentence position is useful for summarization but is superficial in relation extraction. In other
words, they are either task-specific and/or domain-specific measures.

Text readability has multivariate features that consider many attributes like length of para-
graph, words and sentences, and number of polysyllabic and monosyllabic words. In this paper,
I report a text reduction technique called Text Denoising that reduces text data based on text
readability, especially from the biomedical domain, to that which is more information-rich by
removing most of the noise. The reduced text is also expected to be task-independent and
informative enough to improve accuracy of NLP tools across disciplines.

6.2 Proposed Method

Among text readability scores, the following five measures are considered as yardsticks— Fog
Index (hereinafter, FI) [6], Flesch reading ease score (FRES) [7], Smog Index [8], Forcast Index
[9], and Flesch-Kincaid readability index (FKRI) [10]. The choice of using text readability as
an information richness statistic is motivated by the results of an experiment by Duff and
Kabance [11]. In their experiment, a passage with no more than two phrases were converted
into primer prose and FI was applied to test its readability. They found that the score was low
(i.e., the prose was extremely easy to read). The authors concluded that easy texts obscure
the relationships and ideas as they de-emphasize both. In contrast, difficult texts emphasize
relationships and ideas yielding low readability. I suggest that the describing of biomedical
relations, meta information, etc. lengthens sentences as well as increases the use of polysyllabic
words which are the two principal components of many of the readability indexes.

Both rule-based and machine learning-based versions of Text Denoising are based on this
principle that use text readability as a key feature and applies it at the sentence-level to identify
those sentences within a text, called denoised text, where content information, such as biomed-
ical relations, is more likely to occur. The rest of the text is called noise text. I am interested to
observe the effect of using text denoising on different tasks and genres of text.

6.3 Text Denoising on Relation Extraction

I developed a corpus of 24 texts that describe four pairs of related MeSH C and MeSH D con-
cepts reported by Perez et al. [12]. I applied the rule-based version of text denoising on these
texts to extract related biomedical concepts. The only rule I set for this task was to extract
30% of the low-readability sentences from the texts according to their FI score. This threshold
is termed as the denoising threshold and the texts extracted are called denoised texts; the rest
is called noise text. This threshold point was set heurisitically considering the stability in the
frequency of appearance of the related concepts in the corpus. Other than 30%, the results
with different denoising thresholds ranging from 10% to 50%, however, was not satisfactory.
I ranked the pairs of concepts present in the denoised texts using their frequency. Most of the
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Rank Related Concepts Semantic
Relation

1 Ischemia-Glutamate Yes
2 Levels-Ischemia No
3 Levels-Glutamate Yes
4 Glutamate-Neurons Yes
5 10min-Ischemia Yes
6 Glutamate-CA4 Yes
7 Increase-Glutamate Yes
8 10min-Glutamate No
9 Ischemia-5min Yes
9 Glutamate-5min No

Table 6.1: Extracted related concepts for a paper on Ischemia and Glutamate

concept pairs with higher ranks, however, did not contain any semantic relations according to
UMLS semantic relation network. Therefore, I re-ranked the pairs according to their positive
predictive value (PPV) (similar to precision measure used in information retrieval evaluation
tasks) and sensitivity. The pairs of concepts found from this re-ranking showed a convinc-
ing accuracy of 75% (ratio of semantically related concepts to total) against the output of the
UMLS semantic relation network. Table 6.1 shows an output from a paper on one of the four
pairs of concepts. Of note, I found that the noise texts did not have any related biomedical
concepts. The detailled experimental setup and results are reported by Shams and Mercer [13].

Later, I performed an experiment with four other readability scores mentioned in Section
6.2 on the same corpus. A comparative result showed that FI outperformed the other indexes by
extracting more meaningful relations [14]. I also analyzed the performance of the indexes con-
sidering the performance of FI as a benchmark. Table 6.2a and 6.2b show that the SMOG index
is a close second to FI followed by FKRI, while FRES and FORCAST performed poorly. It
can also be noted that the SMOG index, like FI, uses the core measure of complex words which
reveals the fact that the measure of complex word fits best for text denoising and biomedical
relation extraction.

Score Precision Recall F-Score
SMOG 95.83 82.14 88.46
FKRI 88.89 82.76 85.71
FRES 82.61 65.52 73.08
FORCAST 81.82 62.07 70.59

(a)

Score Precision Recall F-Score
SMOG 96.88 82.60 89.16
FKRI 89.73 82.60 86.01
FRES 80.83 65.63 72.44
FORCAST 77.88 61.61 68.72

(b)

Table 6.2: (a) Micro-average and (b) macro-average precision, recall and F-Score of the indexes
on biomedical relation extraction
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Classifier
FAO-780 CERN-290 NLM-500

F-Score t-value F-Score t-value F-Score t-value
with Text Denoising 23.03

5.07
14.73

3.42
14.60

4.14
Benchmark 20.76 12.29 12.21

(a) Performance of KEA

Classifier
FAO-780 CERN-290 NLM-500

F-Score t-value F-Score t-value F-Score t-value
with Text Denoising 27.98

3.78
23.28

2.40
20.15

6.38
Benchmark 25.19 21.04 17.91

(b) Performance of KEA++

Classifier
FAO-780 CERN-290 NLM-500

F-Score t-value F-Score t-value F-Score t-value
with Text Denoising 31.87

2.76
24.42

2.26
31.50

3.52
Benchmark 31.86 24.92 31.13

(c) Performance of Maui

Table 6.3: F-Scores of the keyphrase indexers with text denoising and its benchmark on three
datasets

6.4 Text Denoising on Keyphrase Extraction

I investigated the usability of denoised texts as training data for machine learning-based
keyphrase indexers called KEA [5], KEA++ [4] and Maui [15]. I applied the indexers with their
classifiers induced from denoised training data on three datasets, namely FAO-780, CERN-290
and NLM-500. These datasets are composed of texts from the domains of agriculture, physics
and biomedical science. I compared the result with their benchmark performances that were
achieved by using the full-text training data. Convincingly, in a 10-fold cross validation ex-
periment, both KEA and KEA++, with their classifiers induced from denoised training data,
outperformed their respective benchmark F-scores [16]. Maui, on the other hand, had mixed
results and its denoised text induced classifier performs comparably with its benchmark [17].
The F-Scores are listed in Table 6.3a, 6.3b and 6.3c where a t-value greater than or equal to
2.26 indicates the statistical significance of the results at 95% confidence. Of note, unlike the
fixed denoising threshold of 30% for relation extraction, I found that to get bias-free classifiers
for the indexers, the denoising threshold point needed to be varied (usually between 30%–70%)
for different genres of texts. This outcome confirms that the rule to decide the amount of text
to be extracted from texts substantially depends for different writing styles.
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Dataset Precision (%) Recall (%) F-Score (%)
BioNLP 82.5 87.8 85.1
BioDRB 84.7 91.1 87.8
FetchProt 90.8 89.2 90.0

Table 6.4: Performance of text denoising on extracting protein relations bearing sentences
against the gold standard

6.5 Text Denoising on Extracting Protein Relations bearing
Sentences

In an attempt to eliminate the denoising threshold which depends on writing style (Section 6.4),
I decided to develop a machine learning version of text denoising. The classification task in
hand was to annotate sentences of a set of texts with either positive or negative labels based on
the presence of protein interactions. The feature set chosen is composed of 35 features like var-
ious parameters of readability indexes, term frequency, inverse sentence frequency, biomedical
named entity, verbs and acronyms, stopwords, semantic words, and sentence positions. After
applying a series of well known classifiers like Bayesian classifiers, Random Forest, SVM, Ad-
aBoost, and Bagging, the classifier that performed best was chosen which is Bagging stacked
with Random Forest. The corpora used for this experiment are BioNLP, BioDRB and FetchProt
that contain over 85, 000 sentences. Two automated tools called RelEx [18] and WRelEx [19]
are used to assign binary labels to each sentence of these corpora depending on the presence
of any protein relations. Having realized after this assignment that the classes are negatively
skewed (almost doubled the positive labels), synthetic positive samples are produced using
SMOTE [20] where the minority class is over-sampled by taking each minority class sample
and introducing synthetic examples along the line segments joining any/all of the k, which is
five in our setup, minority class nearest neighbors. From initial results, I found that many fea-
tures were highly correlated with each other but had low correlation with the class. Therefore, I
used a wrapper method to select a set of bias-free features. However, I observed that this set of
features varies for different corpora. Table 6.4 shows the precision, recall and F-Score of text
denoising in a 10-fold cross validation setup, considering the highly agreed upon annotation of
RelEx and WRelEx as the gold standard. It can be noted that the outcome of this experiment
without using SMOTE was not satisfactory as the F-scores were under 80%.

6.6 Conclusion and Future Work

The proposed text denoising method performed much the same on several tasks and kinds of
texts: the reduction of texts according to the readability improved relation mining, keyphrase
indexing and extracting sentences that describe protein relations. This result strongly suggests
that sentences that are difficult to read are more information-rich than the rest. The effect of
text denoising is yet to be examined for text categorization and summarization. I am currently
investigating the effect of readability on e-mail spam detection. The results so far are interesting
as I am labelling spam and ham based on the readability of e-mail text content only (i.e., without
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looking at the mail header). Also, I intend to train benchmark summarizers with denoised texts
and see how they perform against gold standard summaries.
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Classifying Spam Emails using Text and
Readability Features

This chapter is based on the paper titled “Classifying Spam Emails using Text and Readability
Features” co-authored with Robert E. Mercer that appeared in the 13th IEEE International
Conference on Data Mining (ICDM2013).

In this paper, we report a novel spam classification method that uses features based on
email content-language and readability combined with the previously used content-based task
features. The features are extracted from four benchmark datasets viz. CSDMC2010, Spa-
mAssassin, LingSpam, and Enron-Spam. We use five well-known algorithms to induce our
spam classifiers: Random Forest (rf), bagging, adaboostm1, Support Vector Machine (svm),
and Naı̈ve Bayes (nb). We evaluate the classifier performances and find that bagging performs
the best. Moreover, its performance surpasses that of a number of state-of-the-art methods
proposed in previous studies. Although applied only to English language emails, the results
indicate that our method may be an excellent means to classify spam emails in other languages,
as well.

7.1 Introduction

Since the publishing of Spam! in 1998 [1], the menacing onslaught of spam emails has grown
exponentially. According to a recent survey, the number of spam emails sent out in March 2013
is about 100 billion [2]. This phenomenal quantity is 98% more than that from the end of the
previous quarter. Among the drastic effects of spam emails are loss of individual productivity
and financial loss of organizations. Anti-spammers, therefore, are putting forward efforts to
prevent this potential threat to today’s Internet.

Many studies agree that spam emails have attributable patterns [3] [4]. Recognizing this,
spammers are constantly introducing new techniques to obfuscate these recognizable patterns
to fend off supervised anti-spam filters. Therefore, spam filtering is, and is likely to remain,
an interesting machine learning application. Typically, an email exhibits two types of features:
(i) header features and (ii) content-language features. Using either set of features to detect
spam email has its pros and cons. For instance, Zhang et al. [5] empirically showed that
the performances of a handful of machine learning algorithms are not satisfactory with text
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features. Lai and Tsai [6] found similar results, too—according to their study, header features
have a lower total cost ratio than text features. Another typical argument to support the use of
header features is that they are language independent (see, for example, [7] and [8]). However,
Metsis et al. [9] exploited a language independent, content-based feature called term frequency
(tf). Using this feature with different variants of the Naı̈ve Bayes algorithm, they found results
that are better than those found by a number of header-based methods. Likewise, studies are
continuously reporting improved results with email-text features (see Prabhakar and Basavaraju
[10], and Ma et al. [11])—most of which perform better than header features.

The proposed method utilizes text features that are long-established such as frequency of
spam words and html tags as well as some that are new. The novelty of our work is that we
introduce language-centric features such as grammar and spell errors, use of function words,
presence of verbs and alpha-numerics, tf·idf, and inverse sentence frequency. In addition,
we use features related to message readability (e.g., reading difficulty indexes, complex and
simple word frequency, document length, and word length). The features are extracted from
four standard email datasets—CSDMC2010, SpamAssassin, LingSpam, and Enron-Spam. The
features are then used by five well-known learning algorithms—Random Forest (rf), bagging,
adaboostm1, Support Vector Machine (svm), and Naı̈ve Bayes (nb)—to induce binary classi-
fiers. From our extensive experiment, we find that the addition of text and readability features
significantly improves classifier performance compared to that found with the commonplace
features alone. Another notable finding is that the classifier induced by bagging performs the
best on all of the datasets. In addition, its performance surpasses that of a number of state-of-
the-art methods proposed in previous studies. Like Metsis et al. [9], our features are language
independent. Whereas we derive the results solely from English emails, the proposed approach
may be an excellent means to classify spam emails in any language.

The next section details the features used in this research. Following that, we describe the
learning algorithms, performance evaluation measures, and datasets. In Section 7.6, we report
the experimental findings, and in Section 7.7 we provide some discussion of these results,
especially as compared with previous filtering methods. Finally, Section 7.8 concludes the
paper.

Groups Features
Traditional Features Spam Words html Anchors html

Non-anchors
html Tags

Text Features
Alpha-numeric

Words
Verbs Function Words tf·isf

tf·idf Grammar Errors Spelling Errors Language Errors

Readability Features

FI FRES SMOG FORCAST
FKRI Simple Word FI Inverse FI Complex Words

Simple Words Document
Length

Word Length tf·idfcomplex

tf·idfsimple

Table 7.1: The list of features used to classify spams in our experiment.
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7.2 Feature Selection

Each email, in our experiment, is represented as (~x, y), where ~x ∈ Rn is a vector of n at-
tributes and y ∈ {spam, ham} is the label of the email. In our study, we explored 40 attributes
to classify emails and therefore, n = 40. We have grouped these features into three sub-
groups: (i) traditional features, (ii) text features, and (iii) readability features. The list of
features used in our experiment is shown in Table 7.1. The notation used in this section is
“Xi : name = feature value”, where Xi is used to label the graphs later in the paper, name is a
descriptive name, and feature value indicates the feature value calculation. Some features are
also normalized. These normalizations are discussed where warranted.

7.2.1 Traditional Features
Below are descriptions of the four typical features for spam classification that are used in our
experiment.

Dictionary-based Features

The first feature in this group is the frequency of spam words. The selection of this feature
is inspired by the interesting findings of Graham [12]. He showed that merely looking for the
word click in the messages can detect 79.7% of spam emails in a dataset with only 1.2% false
positives. To exploit this feature, we have developed a dictionary comprising 381 spam words1

accumulated from various anti-spamming blogs. We treated each message as a bag-of-words
and counted the frequency of spam words in them as follows:

X1 : Spam Words = #Spam Words.

html Features

The frequency of html tags in emails is a common means to classify spams. We have subdi-
vided this feature into three features: (i) frequency of anchor tags (i.e., number of close-ended
tags <a> and </a>), (ii) frequency of tags that are not anchors, anchor′ (e.g., <p> or <br>),
and (iii) total html tags in the emails (e.g., sum of (i) and (ii)). To identify html tags in the
emails, we used a Java html parser called jsoup2. Each feature is normalized by the length
of the email, N, which is the number of sentences in the message. The detailed html feature
calculations are:

X2 : anchor =
#anchor tags

N ,
X3 : anchor′ =

#anchor tags′

N , and
X4 : total html =

#anchor tags+#anchor tags′

N .

7.2.2 Text Features
These novel (except for Verbs) features focus on various aspects of the email text. These
features into divided into two subgroups: (i) Word-level Features and (ii) Error Features.

1http://cogenglab.csd.uwo.ca/sentinel/spam-term-list.html
2http://jsoup.org/download
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Word-level Features

First, we considered the frequency of alpha-numeric words in the emails. We found reasonable
evidence to select this feature during the development of the spam word dictionary (See Sec-
tion 7.2.1)—many of the dictionary entries are alpha-numerics. The apparent reasons for this
include that spammers often advertise menacing websites by replacing literals of the legitimate
website with numerics and vice versa. This text feature is calculated as follows:

X5 : Alpha-numeric Words = #Alpha-numeric Words.
In their study, Orasan and Krishnamurthy [13] showed that a verb Part-of-Speech (POS)

feature can be a strong identifier of junk emails; nonetheless, very few works have followed
up. We are, however, interested in this particular POS feature. We used the Stanford POS
Tagger3 to tag the POS of each word in the emails and considered the frequency of verbs in
each:

X6 : Verbs = #Verbs.
Third, we used the frequency of function words4 in the emails as a feature. As the definition

of function words varies from task to task, we define them as follows: function words are very
frequent non-content-bearing words such as articles, prepositions, adverbs, etc. We developed
a stoplist function to count the frequency of function words in the emails:

X7 : Function Words = #Function Words.
Fourth, we included another novel feature: tf·isf, a simple summation of the product of tf

and isf, where the prior is the frequency of a term t in a message and the latter is its inverse
sentence frequency. tf of term t can be calculated as follows:
tft = 1 + log(frequencyt), if frequencyt > 0, 0 otherwise,

while its isf is:
isft = log N

sft
,

where N is the message length and sft is the number of sentences with term t. Inverse sentence
frequency is a relative measure of whether the term is common or rare in a single message. The
tf·isf of a message is calculated as follows:

X8 : tf·isf =
∑

t tft × isft, for all t in the message.
Our next feature in this group is tf·idf which is similar to tf·isf except that the inverse

document frequency, idf, measures whether a given term t is common or rare in an entire
dataset. The idf of a term t in the message can be found as follows:
idft = log D

dft
,

where D is the total number of messages in the dataset and dft is the number of messages
containing t. The tf·idf feature is then calculated as follows:

X9 : tf·idf=
∑

t tft × idft.
The feature is then normalized by taking its square root.

Error Features

The next three features are concerned with the grammar and spelling errors present in the
message. For each message, we counted the frequency of grammar and spelling errors using

3http://nlp.stanford.edu/software/tagger.shtml
4http://cogenglab.csd.uwo.ca/sentinel/function-word-list.html
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a Java API called LanguageTool5. By summing up these two errors, we introduced another
feature named Language Errors:

X10 : Grammar Errors = #Nge,
X11 : Spelling Errors = #Nse, and
X12 : Language Errors = #Nte,

where Nge is the number of sentences with grammar errors, Nse is the number of sentences
with spelling errors and Nte denotes the total number of sentences with language-based errors
(i.e., Nte = Nge + Nse). This group of features, to the best of our knowledge, is novel for
spam classification. It is to be noted that for training emails, this feature has been normalized
respectively for hams and spams; for the testing emails for which the class label is unknown,
traditional attribute normalization is performed. Surprisingly, we get unsatisfactory results if
we use traditional attribute normalization for the training emails.

7.2.3 Readability Features

The second group of novel features that we use are readability-based features. Readability
deals with the difficulty of reading a sentence, a paragraph, or a document. Two important
parameters to calculate readability are simple and complex words. Simple words are those
that have at most two syllables while complex words contain three or more syllables. Based
on these two factors and others, five scores, among many, are used as yardsticks to assess the
readability of text. In this section, we divided readability features further into two subgroups:
(i) Score-based Features and (ii) Frequency-based Features.

Score-based Features

We measured the readability of each message in the datasets using the five aforementioned
scoring methods. First, we used the Fog Index (FI) [14], which is the most popular score to
measure readability. The scores of each message can be found as follows:

X13 : FI = 0.4 ×
((∑

Words
N

)
+ 100 ×

(∑
Complex Words∑

Words

))
.

Second, we used the Flesch Reading Ease Score (FRES) [15], one of the oldest readability
scores. The FRES of any given message can be found as follows:

X14 : FRES = 206.835 − 1.015 ×
(∑

Words
N

)
− 84.6 ×

(∑
Syllables∑

Words

)
.

The SMOG index, when first published, was anticipated as a proper substitute for FI due to
its accuracy and ease of use [16]. It is the third readability score used as a feature:

X15 : SMOG Index = 1.043 ×
√

30 ×
∑

Complex Words
N + 3.1219.

The FORCAST index was originally formulated to assess the reading skills required by
different military jobs without focusing on running narratives [17]. The index, unlike others,
emphasizes the frequency of simple words. The following is the way to calculate the FOR-
CAST index of a message:

X16 : FORCAST Index = 20 − W
10 ,

where W is the number of simple words in a 150-word sample of the text.

5http://www.languagetool.org/java-api/
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A second instalment of a readability index proposed by Flesch and further investigated
and modified by Kincaid [18] is known as the Flesch-Kincaid Readability Index (FKRI). This
feature can be calculated as follows:

X17 : FKRI = 0.39 ×
(∑

Words
N

)
+ 11.8 ×

(∑
Syllables∑

Words

)
− 15.59.

In addition, we have modified FI in two different ways to give two additional features. We
chose to modify FI only, because empirical outcomes showed that these modifications of FI
provide better results than those of other scores.

First, in X13, in the place of complex words, we substituted the frequency of simple words:
X18 : FIsimple = 0.4 ×

((∑
Words
N

)
+ 100 ×

(∑
Simple Words∑

Words

))
.

Second, we took the arithmetic inverse of FI of the messages to get the feature Inverse FI:
X19 : Inverse FI = 1

FI .

Frequency-based Features

We also considered the frequency of Complex Words and Simple Words in the messages as two
more features:

X20 : Complex Words = #Complex Words, and
X21 : Simple Words = #Simple Words
Document Length, which has already been used in other features for normalizing, is also

considered as a feature in our research. It simply denotes the number of sentences in a message:
X22 : Document Length = #Sentences.
Word Length of a message is simply the average number of syllables per word. This feature

is calculated as follows:
X23 : Word Length =

#Syllables
#Words .

Our last two features are the combination of tf·idf, and frequency of simple and complex
words. While X9 deals with the tf·idf of any term t, our second last feature (tf·idf)complex deals
with that of complex words. Finally, our last feature (tf·idf)simple considers the tf·idf of simple
words. The formula to calculate these feature are given below:

X24 : (tf·idf)complex =
∑
tfcomplex × idfcomplex, and

X25 : (tf·idf)simple =
∑
tfsimple × idfsimple.

As well, we used 14 more features that are calculated by excluding stopwords from the
features X1, X5, X6, X8, X13 − X21, and X23. In the graphs these features have labels ending
with a dot. It is noteworthy that the features X2, X3, and X4 could not be extracted from the
LingSpam and Enron-Spam datasets as the related information was removed from the messages
by the dataset curators (refer to Table 7.4).

Since we analyzed the feature vectors for all the messages in the datasets, we have found
that the distribution of the most of the feature values is not normal rather they exhibit either
positive or negative skewness. The effect of this skewness was eliminated by using a logarith-
mic transformation of all the feature values. Once log-transformed, the distribution becomes
normal. The newly found log values of any given feature are then normalized by the highest
transformed value of that feature in the dataset; the resulting values are therefore in [0,1].
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Learning Algorithms Parameters

Random Forest (rf)
Maximum Depth: Unlimited Number of Trees to be Generated:

10
Random Seed: 1

adaboostm1
Number of Iterations: 10 Random Seed: 1

Resampling: False Weight Threshold: 100

bagging
Size of Bag (%): 100 Out of Bag Error: False

Number of Iterations: 10 Random Seed: 1

Support Vector Machine (svm)

SVM Type: C-SVC Cost: 1.0
Degree of Kernel: 3 EPS: 0.0010

Gamma: 0.0 Kernel Type: Radial Basis
Epsilon: 0.1 Probability Estimates: False

Shrinking Heuristics: True
Naı̈ve Bayes (nb) Use of Kernel Estimator: False

Table 7.2: Parameters of the learning algorithms used in this experiment.

7.3 Learning Algorithms

We used the well-known learning algorithms Random Forest rf, Naı̈ve Bayes (nb), Support
Vector Machine (svm), and two meta-learning algorithms viz. adaboostm1 and bagging to
induce binary classifiers. What follow are the reasons for choosing the algorithms in our ex-
periment.

Among the learning algorithms, we have chosen Random Forest (rf) for three reasons.
First, it has been used by a number of anti-spam filters because of its high spam-classification
accuracy (see, for instance, [7] and [19]). Second, the algorithm runs efficiently on large data.
Third and most importantly, the learning is fast—which is desirable for any live spam filter.

Our second algorithm, also an ensemble learning method, is called adaboostm1. Although
an ensemble method, adaboostm1 is both simple and fast. The biggest advantage of this ensem-
ble method is that it is less susceptible to training-data overfit. Last but not least, the algorithm
has been reported to perform better than Naı̈ve Bayes (nb) and Probabilistic tf·idf for text cat-
egorization tasks [20]. The reasons to use bagging are primarily three. First, like adaboostm1,
bagging is simple and fast. Note that the speed of learning of this algorithm depends on the
choice of the number of random samples of training data. Second, it is less susceptible to over-
fitting. Finally, it leads to improvements for unstable classification algorithms like trees [21].
In this experiment, rf has been chosen as the base algorithm for adaboostm1 and bagging.
Therefore, we name the classifiers generated by these two algorithms boosted rf and bagged
rf, respectively.

Support Vector Machine (svm) is also a popular learning algorithm for spam detection.
However, from the work of Zhang et al. [5], Lai and Tsai [6], Hu et al. [7], Qaroush et al. [19],
and Ye et al. [22], it is evident that the performance of svm is better with header features than
with text features.

Like svm, Naı̈ve Bayes (nb) is a widely-used learning algorithm in the anti-spamming com-
munity. Benchmark anti-spam tools developed by Lai and Tsai [6], Hu et al. [7], Metsis et
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Actual
SpamHam

Prediction
Spam ns→s nh→s

Ham ns→h nh→h

Table 7.3: Confusion matrix for spam classification problem.

al. [9], and Qaroush et al. [19] use nb to generate classifiers because the algorithm is simple
yet powerful enough to detect spams effectively. For instance, on many occasions, with simple
features like tf·idf, nb even outperformed quality learning algorithms like svm.

The parameter setup for the learning algorithms used in this experiment is presented in
Table 7.2.

7.4 Evaluation Measures
The evaluation of spam classification differs from many other classification tasks. A significant
number of previous works rely on performance measures like precision, recall, F-score, and
accuracy [7] [8] [10] [11] [19]. However, even a poor classifier can achieve overly-optimistic
results on a skewed dataset and appropriate performances on such datasets are not reflected
by the aforementioned measures. Because of the presence of skewness in the datasets, cost-
sensitive measures like ham misclassification rate (fpr), spam misclassification rate (fnr) and
total cost ratio (tcr) [23] [24] are becoming more popular. In addition, being a balanced mea-
sure that combines both fpr and fnr, area under the ROC curve (hereinafter, auc) is also pre-
ferred by many [24]. Considering these facts, we choose to report seven evaluation measures—
fpr, fnr, accuracy, precision, recall (or simply spam recall), F-score, and auc. The measures
are explained below.

All of the measures reported in this paper depend on the confusion matrix given in Table
7.3. Precision is the fraction of spam predictions that are correct. Should the precision be
bigger, the probability of misclassifying a legitimate mail as spam is smaller:

Precision = ns→s
ns→s+nh→s

.
Spam recall examines the fraction of spam emails being recognized. A bigger spam recall

points out that the probability of misclassifying a spam as legitimate mail is smaller:
Recall = ns→s

ns→s+ns→h
.

F-score, simply, is the harmonic mean of precision and recall:
F-score = 2×Precision×Recall

Precision+Recall .
Accuracy, on the other hand, is the percentage of correctly identified spams and hams:
Accuracy = nh→h+ns→s

nh→h+nh→s+ns→h+ns→s
.

fpr denotes the fraction of all legitimate messages classified as spams:
fpr =

nh→s
nh→s+nh→h

.
In contrast, fnr is the fraction of all spams delivered to the user inbox:
fnr =

ns→h
ns→h+ns→s

.
Note that the lower the fpr and fnr, the better the performance. Considering the situation

where users might accept spams to enter into their inbox but they do prefer their hams not to
end up in the spam-traps, a higher fpr is more expensive than a higher fnr. To resolve this, we
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Dataset Total Messages Spam Rate Text
Pre-processed?

Year of
Curation

CSDMC2010 4, 327 31.85% No 2010
SpamAssassin 6, 046 31.36% No 2002

LingSpam 2, 893 16.63% Yes 2000
Enron-1 5, 172 29.00%

Yes 2006

Enron-2 5, 857 25.54%
Enron-3 5, 512 27.21%
Enron-4 6, 000 75.00%
Enron-5 5, 175 71.01%
Enron-6 6, 000 75.00%

Table 7.4: Brief description of the email datasets.

need a balance between fpr and fnr, which is the auc in this case. The auc is measured using
the Receiver Operating Characteristics (ROC) curves. The ROC curve is a 2-D graph whose
Y-axis is the true positive rate (which is indeed 1−fnr) and X-axis is the fpr, and therefore
depicts the trade-offs between the cost of ns→h and nh→s.

7.5 Datasets

A number of standard email datasets are publicly available and widely used. In our experiment,
we chose four of them: (i) CSDMC2010, (ii) SpamAssassin, (iii) LingSpam, and (iv) Enron-
Spam. The reasons for choosing these datasets are manifold. Firstly, emails in these datasets
have been sent out between 2000 and 2010. This provides an interesting test-bed that charac-
terizes the change of language of emails spanning across a decade. Secondly, we are interested
to evaluate our method with spam-skewed datasets. The reason behind this interest is because
with ham-skewed datasets, even a poor classifier can achieve good fpr by classifying most of
the emails, if not all, as hams (see, for example, Bratko et al. [24]). Therefore, we include
Enron 4-6 in our experiment. Thirdly, we include LingSpam in our dataset because not only
are its hams domain-specific but also its excerpts are of scholarly discussions on linguistics.
As a result, we are expecting some features, Error Features (see Section 7.2.2) in particular, to
be more useful for the LingSpam emails. Fourthly, we include datasets that are not explored by
many (e.g., CSDMC2010 and Enron-Spam). Last but not least, the use of Enron-Spam gives
us an opportunity to work with hams coming from a user’s personal inbox.

7.5.1 Description

CSDMC20106, among the four, is the latest collection of emails. The spam rate of this dataset
is reasonable—about 32%. Both hams and spams in this dataset are collected randomly (i.e.,
not from any particular inbox). CSDMC2010 is relatively new and except for the ICONIP-2010

6http://csmining.org/index.php/spam-email-datasets-.html
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challenge participants, this dataset has not been explored by many. In contrast, SpamAssassin7

is one of the most popular public datasets. Like CSDMC2010, the emails of SpamAssassin
are also collected randomly. In addition, the spam rate of this dataset is almost equal to that
of CSDMC2010. The LingSpam dataset [25] is both the smallest and oldest dataset used in
this study. Moreover, its spam rate is smaller than the preceding datasets—only about 17%.
It is, however, the odd one out of the four as the hams in this dataset are collected from the
discussions of a linguistics forum; the spams, on the other hand, are collected randomly. Enron-
Spam [9] is an email collection comprising six different datasets each of which contains ham
messages from a single user of the Enron corpus. Of the six datasets, the bulk of the emails
in Enron 1-3 are hams while the bulk of the emails in Enron 4-6 are spams. This collection is
very different compared to the others as the hams of each dataset bear the characteristics of one
individual. In this paper, we experiment on each of these six datasets and report the average
performance. Table 7.4 briefly outlines the datasets used in this experiment.

7.5.2 Pre-processing
We noticed that spam emails have some features that can easily distinguish them from hams.
Therefore, to provide a conservative estimate of our method’s performance, we follow these
pre-processing steps: First, symbols (like $ or ! signs) or spam words (like porn, webcam, or
lottery) are excluded from the subject field of the emails. Second, attachment fields (if any)
are excluded from the email texts. Third, non-ASCII characters present in the email texts not
only are spam indicators but also the presence of such characters can change the readability of
the entire message. As readability is one of our key features (see Section 7.2.3), we remove the
non-ASCII characters from the messages as well.

7.6 Experimental Results

7.6.1 Feature Importance
In machine learning, the identification of features relevant for classification is important, so is
the observation of results when features work in groups. This identification and observation
give us a set of features that are important [26] [27]. To measure feature importance, we use
a feature importance measuring algorithm named Boruta8 that uses a wrapper around Random
Forest. The details of the Boruta algorithm are beyond the scope of this paper but can be found
in the study by Kursa and Rudnicki [26]. We applied the algorithm on each of the datasets. Of
note, due to limited space, the analysis of feature importance for the six Enron-Spam datasets
are made available elsewhere9.

Figure 7.1 exhibits the boxplots created with Boruta for the non-personalized email
datasets. The Y-axis of each plot represents feature importance (a measure specific to the
algorithm) while the X-axis represents feature labels (see Section 7.2). The features are sorted
according to the ascending order of their importance in determining class labels. The key

7http://spamassassin.apache.org/publiccorpus/
8http://cran.r-project.org/web/packages/Boruta/index.html
9http://cogenglab.csd.uwo.ca/sentinel/feature-importance.html
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(a) The order of the features according to their im-
portance for the CSDMC2010 dataset.
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(b) The order of the features according to their im-
portance for the SpamAssassin dataset.
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portance for the LingSpam dataset.

Figure 7.1: Feature importance on three datasets according to the Boruta algorithm.

finding in the plots is that for all the datasets, the most important feature is Spam Words (X1).
Another interesting finding is that the error features (see Section 7.2.2) are close in importance.
In addition, the tf·idf of simple words (X25) and the html features (X2 and X3, in particular) are
important features for CSDMC2010 and SpamAssassin emails (Figures 7.1a and 7.1b). The
relative position according to the importance of Alpha-numeric Words (X5) is similar in all three
datasets as is the Verbs feature (X6). Interestingly, the function word feature (X7) performed
reasonably well—to the best of our knowledge not many consider this as a spam detection fea-
ture. Except tf·idf of simple and complex words, most of the readability features are on the left
side of the graph—seeming to be less important. Note that the significance of the readability
features becomes evident when we, next, investigate the feature performance in groups.

We are also interested in reporting the importance of the features in groups. To do this, we
used the traditional features (Section 7.2.1) as our baseline. These features are first used by the



www.manaraa.com

Chapter 7. 68

algorithms to classify the emails. Then, we added the text features and html features. As well,
we added the readability features with the baseline. fpr is chosen as the measure to evaluate
the classification. Figure 7.1 strongly suggests that the traditional features are important for
spam classification. The interesting results shown in Table 7.5, however, indicate the effect
of combining the features. One common attribute of these results is that the ham misclassifi-
cation rate decreases as the baseline features are combined with text and readability features.
Another significant finding is that combining the readability features with the baseline may not
produce the optimal result but combining these two groups of features with text features (i.e.,
using the entire feature pool) improves the ham misclassification rate. However, in that case
the two exceptions are CSDMC2010 and Enron-Spam. Also from the results, the lowest fpr is
achieved by the rfs—bagged rf, in particular. Although the fprs for svm and nb seem promis-
ing, their significantly low auc indicates a possible overfit, especially for the CSDMC2010 and
LingSpam datasets. The results for svm and nb, therefore, are in doubt. The lowest fpr in Table
7.5 is achieved by bagged rf using all features on the most language homogeneous dataset, the
LingSpam dataset.

Note that the fprs that are not statistically significant compared to the comparable baseline
are written in italics.

7.6.2 Classification Performance Evaluation
Treating each dataset independently, the real-valued features are extracted from each email
of each dataset. Then, using a conventional stratified 10-fold cross-validation approach, five
classifiers are generated using the five algorithms. The classifiers are then evaluated. In a k-fold
cross-validation, the original dataset is randomly partitioned into k equal-sized folds or subsets.
Then each classifier is trained on k−1 folds and evaluated on the remaining fold. Stratification
means that the class (i.e., ham or spam) in each fold is represented in approximately the same
proportions as in the full dataset. The cross-validation process is then repeated until each of
the k folds is used exactly once as the validation data. The final estimation of the classifier is
the average of the k results from the folds.

Table 7.6 shows the performance of the learned classifiers on spam email classification.
The most striking attribute of this data is that the best ham misclassification rate is achieved by
the bagged rf classifiers. In contrast, the best spam misclassification rate is attained by boosted
rf. To decide the best, we then refer to a balanced measure of the two: the auc. According to
the data shown in Table 7.6, bagged rf performs the best of all because it has the better auc. A
further indicator of the supremacy of bagged rf over the others can be found in Table 7.6c—its
best fpr comes from LingSpam indicating that it performs best at identifying domain-specific
hams. The interesting competition between bagged rf and boosted rf continues on precision
and recall. For all four datasets, bagged rf achieves the best precision while the best recall is
scored by boosted rf. For two datasets, SpamAssassin and LingSpam, boosted rf achieves the
best F-score. On the other hand, bagged rf ties with boosted rf for CSDMC2010; for Enron-
Spam it is bagged rf that attains the best F-score. Recall that, CSDMC2010 and SpamAssassin
have similar characteristics as well as spam rates (see Section 7.5). This is complemented by
the results in Tables 7.6a and 7.6b. The data show that except for the svm classifiers, others have
similar fprs. When it comes to accuracy, bagged rf again outperforms the other algorithms—
the only exception is the SpamAssassin dataset.
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Baseline Baseline + Text
Feature

Baseline +

Readability
Features

All

rf 0.060 0.034 0.038 0.040
boosted rf 0.062 0.028 0.028 0.030
bagged rf 0.055 0.023 0.023 0.020
svm 0.022 0.037 0.023 0.027
nb 0.031 0.065 0.093 0.101

(a) fpr of different groups of features combined with the baseline for the CSDMC2010 dataset.

Baseline Baseline + Text
Feature

Baseline +

Readability
Features

All

rf 0.064 0.040 0.045 0.034
boosted rf 0.071 0.029 0.034 0.026
bagged rf 0.061 0.026 0.028 0.022
svm 0.055 0.063 0.050 0.052
nb 0.060 0.075 0.094 0.104

(b) fpr of different groups of features combined with the baseline for the SpamAssassin dataset.

Baseline Baseline + Text
Feature

Baseline +

Readability
Features

All

rf 0.041 0.019 0.023 0.017
boosted rf 0.044 0.018 0.016 0.017
bagged rf 0.040 0.011 0.015 0.009
svm 0.0004 0.012 0.020 0.014
nb 0.063 0.091 0.214 0.218

(c) fpr of different groups of features combined with the baseline for the LingSpam dataset.

Baseline Baseline + Text
Feature

Baseline +

Readability
Features

All

rf 0.404 0.164 0.245 0.174
boosted rf 0.404 0.156 0.240 0.158
bagged rf 0.402 0.143 0.218 0.150
svm 0.424 0.371 0.442 0.416
nb 0.408 0.304 0.376 0.336

(d) fpr of different groups of features combined with the baseline for the Enron-Spam dataset.

Table 7.5: The effect of incrementing groups of features on spam classification for (a) CS-
DMC2010, (b) SpamAssassin, (c) LingSpam, and (d) Enron-Spam Datasets. The fprs that are
not statistically significant compared to the comparable baseline are written in italics.
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fpr fnr Accuracy
%

Precision Recall F-score auc

rf 0.040 0.092 94.338 0.914 0.908 0.911 0.980
boosted rf 0.030 0.089 95.124 0.934 0.912 0.922 0.980
bagged rf 0.020 0.107 95.193 0.953 0.893 0.922 0.988
svm 0.027 0.390 85.718 0.913 0.610 0.730 0.792
nb 0.101 0.396 80.471 0.737 0.604 0.662 0.855

(a) Evaluation measures of the full-featured spam classifiers for the CSDMC2010 dataset.

fpr fnr Accuracy
%

Precision Recall F-score auc

rf 0.034 0.093 94.707 0.923 0.907 0.915 0.979
boosted rf 0.026 0.079 95.700 0.941 0.921 0.931 0.982
bagged rf 0.022 0.099 95.353 0.948 0.901 0.924 0.986
svm 0.052 0.292 87.265 0.861 0.708 0.777 0.828
nb 0.104 0.558 75.373 0.660 0.443 0.529 0.847

(b) Evaluation measures of the full-featured spam classifiers for the SpamAssassin dataset.

fpr fnr Accuracy
%

Precision Recall F-score auc

rf 0.017 0.162 95.817 0.907 0.838 0.869 0.978
boosted rf 0.017 0.162 95.886 0.910 0.838 0.871 0.977
bagged rf 0.009 0.193 95.956 0.944 0.807 0.868 0.986
svm 0.014 0.341 93.156 0.907 0.659 0.760 0.822
nb 0.218 0.277 77.186 0.402 0.723 0.515 0.831

(c) Evaluation measures of the full-featured spam classifiers for the LingSpam dataset.

fpr fnr Accuracy
%

Precision Recall F-score auc

rf 0.174 0.072 91.681 0.887 0.927 0.906 0.960
boosted rf 0.158 0.070 92.288 0.896 0.929 0.912 0.956
bagged rf 0.150 0.080 92.521 0.910 0.919 0.914 0.972
svm 0.416 0.379 78.350 0.836 0.620 0.627 0.602
nb 0.336 0.302 73.344 0.680 0.697 0.686 0.750

(d) Average evaluation measures of the full-featured spam classifiers for the Enron-Spam dataset.

Table 7.6: Performances of the classifiers on (a) CSDMC2010, (b) SpamAssassin, (c)
LingSpam, and (d) Enron-Spam Datasets.

Compared to the preceding results, the performances of svm and nb are not satisfactory.
Attaining very low fpr with a low auc by svm for CSDMC2010 and LingSpam indicates a
possible training overfit. The reasons for this possible overfit are yet to be investigated. On the
other hand, we examined the correlation among the features. It is evident that the features have
inter-dependency10—which contradicts the independence assumption of the nb algorithm and

10http://cogenglab.csd.uwo.ca/sentinel/sentinel-attribute-correlations.html
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fpr fnr Accuracy
%

Precision Recall F-score auc

rf 0.187 0.320 71.411 0.796 0.714 0.731 0.830
boosted rf 0.159 0.329 71.510 0.805 0.712 0.732 0.843
bagged rf 0.125 0.369 69.473 0.809 0.695 0.713 0.855
svm 0.059 0.578 55.772 0.799 0.558 0.570 0.681
nb 0.176 0.634 48.529 0.712 0.485 0.497 0.645

(a) Classifiers trained on ham skewed Enron 1-3 and tested on spam skewed Enron 4-6.

fpr fnr Accuracy
%

Precision Recall F-score auc

rf 0.458 0.077 64.494 0.808 0.645 0.661 0.865
boosted rf 0.445 0.069 65.709 0.815 0.657 0.673 0.887
bagged rf 0.379 0.061 70.793 0.834 0.708 0.723 0.908
svm 0.842 0.028 37.833 0.763 0.378 0.321 0.564
nb 0.734 0.089 44.048 0.732 0.440 0.425 0.717

(b) Classifiers trained on spam skewed Enron 4-6 and tested on ham skewed Enron 1-3.

Table 7.7: Performances of the classifiers on Enron-Spam.

can be a reason for the algorithm’s poor classification performance.

The data in Table 7.6d describe the performance of our method on the Enron-Spam dataset.
The most intriguing finding is that on this dataset, the classifiers’ fnrs are remarkably low.
Inevitably, the fprs of the classifiers on the dataset are the poorest. Although the auc is still
reasonable, the results are not quite as good as we expected. This phenomenon confirms that
for personalized email data, our approach misclassifies a lot of legitimate emails. Two other
notable aspects of the reported data are that on the Enron-Spam collection the classifiers have
(i) the best accuracy and (ii) the poorest recall.

From the results of Table 7.6, it can be seen that except for Enron-Spam, the fprs of the
classifiers are much better than their fnrs. The most likely cause for the classifiers labelling
hams more correctly than spams is that CSDMC2010, SpamAssassin, and LingSpam are ham
skewed (Table 7.5), To see whether the training on a skewed dataset affects the overall perfor-
mance of the classifiers, we further tested with the Enron-Spam dataset. We first trained the
classifiers with Enron 1-3 and tested them on Enron 4-6. And then, we trained the classifiers
with Enron 4-6 and tested them on Enron 1-3. It is evident from the data in Table 7.7 that train-
ing on a ham skewed dataset results in improved fpr while training on a spam skewed dataset
brings about better fnr. A significant change to spam recall has also been observed from the
results as spam recalls listed in Table 7.7a are better than that in Table 7.7b. In other words,
the results suggest that no matter how we train our classifiers, either with spam or ham skewed
training data, we need our test set to contain more spams than hams to get better spam recall.
This finding is significant because a low recall results in low F-score and auc. Overall, from
this particular experiment, we can say that to observe the true performance of spam classifiers,
reported work should test their system on a balanced dataset.
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7.7 Discussion and Related Work

In this section, our results are compared with some of the related work. Of the references
mentioned throughout this paper, we only compare our results with the commensurate ones—
those that used the same dataset. Moreover, the compared results are evaluated with a student t-
test with a significance level set to 5% (i.e., α = 0.05) to report if the differences are significant.

We have mixed results for the CSDMC2010 dataset. Qaroush et al. [19], for instance, in-
vestigated the performance of several learning algorithms on this dataset. They concluded that
rf outperforms the rests. The reported spam recall in their paper is 0.958, which is significantly
better than what we found (0.912) (Table 7.6a). Whereas their precision is similar to that of
our approach, because of their high recall, their 0.958 F-score also outperforms our F-score of
0.922 (Table 7.6a). Surprisingly, we outperform them if we do a cost-sensitive analysis of our
data. The auc that we found for the dataset is 0.988 (Table 7.6a) which is better than what they
found (0.981). An svm-based spam filter developed by Yang et al. [28], on the other hand, re-
ported 0.943 precision, 0.965 recall, and a promising auc of 0.995. Among the three measures,
we only obtained a better precision. Their second anti-spam filter uses a an nb classifier. This
filter, interestingly, achieved 100% recall. Its precision of 0.935 and auc of 0.976, however,
was outperformed by our approach (Table 7.6a). Note that, the differences in the results are
statistically significant.

By using 328 features, the filter developed by Ma et al. generates a Neural Network clas-
sifier. On the SpamAssassin dataset, they reported that both their precision and accuracy was
0.920. On the other hand, our approach achieved a 0.948 precision and 0.957 accuracy. Both
of these results are statistically significant. Another Neural Network based filter developed by
Srisanyalak and Sornil [29] uses immunity-based features from emails. The filter has been re-
ported to be accurate 92.4% of the time. Our reported accuracy is better than this (Table 7.6b).
The phenomenal fpr and fnr achieved by the filter developed by Bratko et al. (fpr=0.001
and fnr=0.012) indicates that our approach needs further improvement in these measures; our
reported fpr and fnr are 0.023 and 0.079, respectively (Table 7.6b).

From previous studies, we found that the performance of the filters are relatively low on
the LingSpam dataset. Prabhakar and Basavaraju [10], for instance, applied k-nnc and a data
clustering algorithm called birch on this dataset. Their filter achieved 0.698 precision, 0.637
recall, 0.828 specificity, and an accuracy of 0.755. In contrast, the data in Table 7.6c show that
our approach has a precision of 0.944 with 0.838 recall, 0.990 specificity (1 − fpr), and 0.960
accuracy. Our reported auc on LingSpam also outperformed that reported by Cormack and
Bratko [30]; our auc of 0.986 is significantly better than their auc of 0.960. The recall we have
on this dataset is much better than that reported by Yang et al. [28]; the precisions, however,
are similar. Their nb-based filter achieved 0.943 precision and 0.820 recall. Surprisingly, the
auc of their filter (e.g., 0.992) significantly outperformed the auc of our approach (Table 7.6c).

As mentioned in Section 7.6.2, our results with the Enron-Spam dataset are not satisfactory
because of the properly balanced property of the dataset. The curators of the dataset, however,
reported a spectacular spam recall of 0.975 [9] while our best spam recall on the dataset is
0.929 with boosted rf. Moreover, their reported ham recall is 0.972; ours is a mere 0.842
(Table 7.6d). However, we have recently surpassed the results reported by Metsis et al. [9]
using an anti-spam filter named sentinel [31] that we have developed using the ideas presented
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in this paper.

7.8 Conclusions
To sum up, we consider the task of email classification as a supervised machine-learning prob-
lem. The novelty of this work is the use of a set of features related to the readability of email
texts. Because the features are language-independent, the method reported in this paper is
potentially able to classify emails written in any language. The aforementioned features as
well as the traditional ones are used to generate binary classifiers by five well-known learning
algorithms. We then evaluate the classifier performances on four benchmark email datasets.
The evidence from this study suggests that although traditional features are individually more
important than the other feature types, the combination of all of the features produces the op-
timal results. Extensive experiments also imply that classifiers generated using meta-learning
algorithms perform better than trees, functions, and probabilistic methods. Finally, we com-
pare the results of our method with that of many state-of-the-art anti-spam filters. Although the
performance of our method is not always superior to other filter-dataset instances, we find that
our approach surpasses a number of them. Taken together, the results suggest that the method
described in this paper can be a good means to classify spam emails.

Because our results suggest that meta-learning algorithms perform the best, further tests
should be carried out to see the performance of classifiers generated by stacking several algo-
rithms.
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Personalized Spam Filtering with Natural
Language Attributes

This chapter is based on the paper titled “Personalized Spam Filtering with Natural Language
Attributes” co-authored with Robert E. Mercer that appeared in the 12th IEEE International
Conference on Machine Learning Applications (ICMLA2013).

In this paper, we report the performance of an anti-spam filter named sentinel. In addition
to some commonplace attributes, sentinel uses attributes related to natural language stylom-
etry. The filter has been tested with six benchmark datasets in the Enron-Spam collection.
Classifiers generated by well-known meta-learning algorithms like adaboostm1 and bagging
perform equally the best, while a Random Forest (rf) generated classifier performs almost as
well. The performance of classifiers using Support Vector Machine (svm) and Naı̈ve Bayes
(nb) are not satisfactory. Comparisons show that the performance of sentinel surpasses that of
a number of state-of-the-art personalized filters proposed in previous studies.

8.1 Introduction

Today’s spam emails are very different than what they were called in the 1980s. Simply,
they are not just “Usenet messages cross-posted to numerous newsgroups” anymore [1].
Now, spams are in fact used to refer to unsolicited, massively posted commercial and non-
commercial emails. The onslaught of spams has grown exponentially. In March 2013, for
instance, 100 billion spams were sent out daily. This quantity is 98% more than that from
the previous quarter [2]. The effects of spams include loss of individual productivity, finan-
cial loss of organizations, cluttering of user inboxes, and consumption of network bandwidth.
Therefore, spam filtering is an important challenge.

Spam filtering is an interesting binary classification problem. Classifiers are trained on a
reasonable quantity of spams and hams (i.e., legitimate emails), and then applied on unseen
emails to classify them into one of these two categories. Classifiers induced by well-known
algorithms like Naı̈ve Bayes (nb) [3] [4] [5], Random Forest (rf) [6], Support Vector Machine
(svm) [7] and Neural Networks (nn) [8] are used in many operational anti-spam filters. As test
beds for these classifiers, several email datasets have been used most of which contain emails
that are collected from random sources. Enron-Spam [3], on the other hand, is a collection of
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six benchmark datasets that is useful to test personalized filters, i.e., filters that are trained on
incoming messages of a particular user that they are intended to protect.

Natural language attributes of email subject and body have a considerable ability to discern
spams and hams [3] [8]. Most of these attributes are based on the importance of a term in
the email (i.e., term frequency or tf) and its rarity in the email dataset (i.e., inverse document
frequency or idf). The tf·idf attributes are very promising for personalized filters (see, for ex-
ample, [3] and [9]), whereas Lai and Tsai [5] report that tf·idf does not perform as well on
randomly collected emails as on personalized emails. Furthermore, the calculation of tf·idf is
done on the word-count space. Therefore, for each newly arrived email, this attribute needs
to be re-calculated. The re-calculation, if not done incrementally, can introduce latency. As
well, the use of terms by spammers changes over time [10]. Therefore, the value of attributes
based solely on terms and their frequency may decrease because of this time-sensitivity. How-
ever, there are natural language attributes that are still unexplored in this problem domain, viz.
readability, grammar and spelling mistakes, and the use of function and content words. Similar
attributes have been proposed by writer stylometry and used to detect fraud in documents [11].

In this paper, we report the performance of an anti-spam filter named sentinel on per-
sonalized emails. Besides conventional spam filtering attributes, sentinel uses many natural
language attributes that are related to email readability, grammar, spelling, use of function and
content words, tf·idf, etc. The attributes are extracted from six datasets of the Enron-Spam col-
lection. In this experiment, we test the classifiers generated by sentinel using Random Forest
(rf), Support Vector Machine (svm), and Naı̈ve Bayes (nb). In addition, two more classifiers
are generated using the meta-algorithms adaboostm1 and Bootstrap Aggregating (bagging). We
use rf as the base classifier for both and name these classifiers boosted rf and bagged rf, re-
spectively. Results show that boosted rf and bagged rf perform almost equally the best while
the performance of rf is a close second. Interestingly, the performance of svm depends on the
quantity of spams in the training set. nb has the poorest results of all—which is understandable
as most of the attributes exhibit inter-dependency. Comparisons show that the performance of
sentinel surpasses that of a number of state-of-the-art personalized filters proposed in previous
studies. The natural language attributes of sentinel are similar to stylometric attributes and are
therefore language independent. As a result, the filter may be an excellent means to classify
spam emails in any language.

The next section details the related work. Following that, we describe the materials and
methods in Section 8.3. In Section 8.4, we report the experimental findings. Finally, Section
8.5 concludes the paper.

8.2 Related Work

The earliest of the nb anti-spam filters were simple and computationally efficient. Likewise,
they attained low misclassification rates on several datasets. These filters exploited the simple
Bayesian framework, a set of rules, and both header and content attributes [12]. The initial
success of these filters led several others to emerge by simply replacing the rules with pre-
dictive models (see, for example, [3] [5] [13] [14]). Several variations of these filters include
multivariate Bernoulli, Bag of Words (BoW), multinomial boolean, etc. Metsis et al. [3], for
instance, used 3000 multinomial boolean tf attributes—the results were very impressive. Two
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years later, they achieved even better results by using the transformed tf attributes [15]. Nowa-
days, the performance of an nb filter is considered as the de facto standard to compare a newly
developed method.

svm filters are efficient for training in much the same way as nb filters nevertheless they need
incremental training to reduce latency [16]. Furthermore, for this problem domain, svm filters
can handle large attribute sets [7]. Most of the benchmark svm filters use the frequency-based
linear kernel. As well, there are several svm filters that use updatable supervised clustering
algorithms [17]. However, the trade-off with svm filters is that their misclassification rate for
personalized emails is quite high.

The advantages of using meta-learning anti-spam filters are manifold. Firstly, when a base
learner with a sufficient tree depth is used, they achieved low misclassification rates on many
public datasets [18]. Secondly, these filters are resistant to the problem of overfitting and
therefore they gain a more appropriate accuracy even on an unbalanced dataset1 [19]. However,
these filters have the weakness of ensemble learning—the interpretation of results is difficult.
Studies show that meta-learning filters outperform many decision tree, nb, and svm filters.
Surprisingly, the use of this category of filters is still not as widespread as nb and svm filters.

Over the last decade, Artificial Immune System based anti-spam filters have become a
popular choice. These filters use detectors on the email for pattern matching. Detectors are in
fact regular expressions that are defined a priori. Each detector is given a weight that is adjusted
as the filters recognize a pattern in a given email. The weights of the matching detectors are
then used (usually combined) to determine the email’s class label. Notable immune system
based filters are reported in [9], [20], and [21]. As the filters seek specific signatures in the
emails, they are widely used in personalized email classification where similar patterns can be
found in the writing style of the person the filter intends to protect. Also, many of these filters
are able to deal with Concept Drift— the gradual or abrupt change of thematic context over
time such as new advertisement themes in spam.

Ham + Spam Ham:Spam Time-stamp (Ham, Spam Duration)
Enron 1 (farmer-d + gp) 3672:1500 [12/99, 1/02] [12/03, 9/05]

Enron 2 (kaminski-v + sh) 4361:1496 [12/99, 5/01] [5/01, 7/05]
Enron 3 (kitchen-l + bg) 4012:1500 [2/01, 2/02] [8/04, 7/05]

Enron 4 (williams-w3 + gp) 1500:4500 [4/01, 2/02] 12/03, 9/05]
Enron 5 (beck-s + sh) 1500:3675 [1/00, 5/01] [5/01, 7/05]

Enron 6 (lokay-m + bg) 1500:4500 [6/00, 3/02] [8/04, 7/05]

Table 8.1: The details of the Enron-Spam collection as described by Metsis et al. [3]: compo-
sition, ham-spam ratio, and time-stamps of the emails.
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8.3 Materials and Methods

8.3.1 Email Datasets
For decades, several email datasets have been used to gauge the performance of anti-spam fil-
ters, viz. LingSpam, SpamAssassin, and CSDMC2010. Because the emails in these datasets
are collected randomly and therefore do not represent personal inboxes, anti-spam filters aimed
at protecting a particular user cannot be evaluated on them. Simply put, to evaluate personal-
ized spam filtering, we need personalized email data. Enron-Spam2 [3] is a collection of emails
composed of six datasets each containing ham emails from a single person in the Enron cor-
pus. These ham collections are dubbed as follows: farmer-d, kaminski-v, kitchen-l,
williams-w3, beck-s, and lokay-m. The spams are collected from three different sources.
First, a mix of spams that are collected from the SpamAssassin corpus and spam traps of the
Honeypot project3 are put together; these spams are dubbed as (sh). Second, bg spams are
collected from the spam traps of Bruce Guenter4. Third, spams collected randomly from the
mailbox of Georgios Paliouras [3] (gp). The foregoing six ham email collections are each
paired with one of these three spam collections (sh, bg, and gp). Thereafter, the six collec-
tions are dubbed as Enron 1 to Enron 6. Of the six collections, Enron 1–3 are ham skewed
(ham:spam is 3:1) while Enron 4–6 are spam skewed (ham:spam is 1:3). The summary of the
characteristics of the Enron-Spam dataset can be found in Table 8.1.

For conservative estimates of the proposed filter, the following pre-processing steps are
considered. First, the subject field of spams can contain symbols such as $ or !. As well, they
contain spam words such as porn, webcam, or lottery. Therefore, such entries are excluded
from the subject fields of the emails. Second, many emails in the collection can contain an
attachment field. This extraneous field is removed from the emails (if any). Third, non-ASCII
characters in the email text are removed since the values of our natural language attributes are
affected by their presence.

8.3.2 Attribute Selection
Each email in our experiment is represented as (~x, y), where ~x ∈ Rn is a vector of n attributes
and y ∈ {spam, ham} is the label of the email. In our study, we explored 37 attributes to classify
spam emails and therefore, n = 37. Table 8.2 summarizes the attributes used in our experiment.

Word-level Attributes

To calculate the word-level attributes, we treated each email as a bag of words. We curated a
dictionary that comprises 381 spam words5. Using this dictionary, we counted the frequency of
spam words in the emails. This attribute is inspired by the interesting findings of Graham [13]
who showed that by merely finding the word click in the emails can detect 79.7% of spam

1Most of the public email datasets are unbalanced [16].
2Downloadable at https://labs-repos.iit.demokritos.gr/skel/i-config/downloads/enron-spam
3Consult with http://www.projecthoneypot.org
4Overview at http://untroubled.org/spam
5Downloadable at http://cogenglab.csd.uwo.ca/sentinel/spam-term-list.html
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emails in a dataset with only 1.2% ham misclassification rate. Our other word-level attributes
include the frequency of alpha-numeric words, verbs, and function words. To identify the verbs
in the emails, we used the Stanford part-of-speech Tagger6. On the other hand, to identify
function words, we utilized the stoplist function of a topic indexer named Maui7.

In our experiment, we included the term frequency (tf) attribute used by at least two nb
filters [3] [15]. For each term, which appears in at least four training emails, information gain
scores are computed according to previous work [22]. Of all the terms in the dataset, 3000
with the highest scores are considered as the tf vector for all the emails. Thereafter, should
any of these 3000 terms be found in an email, the term’s corresponding frequency value in the
tf vector is first transformed (see [15] for details) and then normalized. Finally, the normalized
value is used to calculate the probability score of the email according to Bayes’ theorem. The
overall method can be found in the study of Kosmopoulos et al. [15].

Furthermore, we measured the tf·isf of each email. Here, the term frequency (tf) is the
square root of the frequency of a term t in an email M while the inverse sentence frequency
(isf) is a relative measure of whether t is common or rare in M. tf·isf, therefore, reflects how
important each t is to an M. In addition, the measure controls the fact that in an email, some
terms are generally more common than others. In contrast, we used tf·idf of each email as our
attribute, which is a numerical statistic that reflects how important a term t is to an email M in
the dataset D to which M belongs. The tf·idf value increases proportionally to the number of
times t appears in the email M, but is offset by the frequency of t in the dataset D. The definition
of tf is the same as for tf·isf while inverse document frequency (idf) measures whether a given
term t is common or rare in the dataset D.

Error Attributes

Our next set of attributes is related to the grammar and spelling errors present in the emails.
For each email, we simply counted the frequency of grammar and spelling errors using a Java
API called LanguageTool8. By summing up the values of these two attributes, we introduced
a third attribute in this category named Language Errors. Interestingly, the error attributes are
not normalized since we have obtained better results without normalizing them.

Readability Attributes

Readability deals with the difficulty of reading a sentence, a paragraph or a document. At the
heart of readability lies the notion of simple and complex words. Simple words are those that
have at most two syllables while complex words contain three or more syllables. Since both
types of words have a significant contribution for text readability, we have included them in our
attribute list. Five standard scores use these two types of words to determine the readability of
a given text: Fog index, Smog index, Flesch reading ease score, Forcast, and Flesch-Kincaid
index. For each email, all five readability scores are computed and used as attributes. Among
the scores, Fog index measures the relative use of complex words in a document. In addition,
we modified the Fog index formula to measure the relative use of simple words in a document,

6Downloadable at http://nlp.stanford.edu/software/tagger.shtml
7Downloadable at https://code.google.com/p/maui-indexer/
8Available at http://www.languagetool.org/java-api/
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Category Quantity Description
Word-level Attributes 11 Spam words, Alpha-numeric words, Function

words, Verbs, tf [3] [15], tf·isf, tf·idf.
Error Attributes 3 Grammar and spelling mistakes.
Readability Attributes 23 Simple and complex words and their tf·idf,

Fog index, Simple and Inverse Fog index,
Smog index, Flesch reading ease score,
Forcast, Flesch-Kincaid score, Email length,
Word length.

Table 8.2: Summary of the attributes: category, quantity, and description. The stylometric
attributes are all Error Attributes, all Readability Attributes, and three Word-level Attributes:
Alpha-numeric words, Function words, and Verbs.

and considered that as an attribute, too. Furthermore, we considered the arithmetic inverse of
Fog index as another attribute. The other attributes in this category include email length (i.e.,
total sentences in an email), average word length (i.e., total syllables over total terms in an
email), and tf·idf of simple and complex words. The details of the attributes are discussed
elsewhere [23].

Note that the aforementioned attributes are computed by both including and excluding the
function words in the emails—the exceptions being the frequency of function words, tf, email
length, and tf·idf attributes. Analyzing the real valued attributes, we have found that their dis-
tribution is either left-tailed or right-tailed. This skewness of attribute values, which leads to
poor classifiers, has been eliminated by using a logarithmic transformation of all the attribute
values. Once log-transformed, the distribution of the attributes becomes normal. For each at-
tribute, the transformed values are then normalized by the maximum; the resulting normalized
values are therefore in [0, 1].

8.3.3 Learning Algorithms

In this experiment, well-known learning algorithms such as Random Forest rf, Naı̈ve Bayes
(nb), and Support Vector Machine (svm) are used to induce binary classifiers. We also used two
meta-learning algorithms viz. adaboostm1 and bagging. Random Forest has been chosen as
the weak learner for each, and are named boosted rf and bagged rf, respectively. The reasons
for choosing these algorithms follow.

As found in much recent research [4] [6], rf is able to produce highly accurate spam classi-
fiers, which is desirable for any anti-spam filter. Overall, rf classifiers also have the reputation
for being fast and efficient with large data [24]. On the other hand, although it generates
complex models, svm is a popular choice for anti-spam filters. The algorithm has notable per-
formances with header features [4] [5] [6] [7]. nb is also a widely used learning algorithm for
anti-spam filters. It is simple yet provides powerful spam detectors [3] [6]. In addition, on
many occasions, nb using simple attributes such as tf·idf has even outperformed quality learn-
ing algorithms, like svm. Unlike the others, adaboostm1 and bagging are meta-learners that
improve a given weak learning algorithm most of the time [25] [26]. In the following experi-
ments, we have considered rf as the weak learner for these two algorithms. Both adaboostm1
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Actual
SpamHam

Prediction
Spam ns→s nh→s

Ham ns→h nh→h

Table 8.3: Confusion matrix for spam classification problem.

and bagging are simple, fast, and above all, are less susceptible to overfitting the training data.
And finally, their performances are better than algorithms like nb and probabilistic tf·idf for
text categorization tasks.

8.3.4 Evaluation Measures
All of the measures reported in this paper depend on the confusion matrix given in Table 8.3.
Precision is the fraction of spam predictions that are correct and can be written as follows:
prec = ns→s

ns→s+nh→s
.

On the other hand, recall—also known as spam recall—examines the fraction of spam
emails being retrieved:
rec = ns→s

ns→s+ns→h
.

F-score (fm), simply, is the harmonic mean of precision and recall. Accuracy, on the other
hand, is the percentage of correctly identified spams and hams:
acc = nh→h+ns→s

nh→h+nh→s+ns→h+ns→s
.

Noting that users might accept some spams to enter into their inbox but that they prefer
their hams not end up in the spam-traps, email misclassification is cost-sensitive. The ham
misclassification (false positive) rate denotes the fraction of all ham emails classified as spams:
fpr =

nh→s
nh→s+nh→h

.
In contrast, the spam misclassification (false negative) rate is the fraction of all spams

delivered to the user inbox:
fnr =

ns→h
ns→h+ns→s

.
Another viable alternative for the cost-sensitive analysis of email misclassification is to

report the Area Under Curve (hereinafter, auc), measured using the Receiver Operating Char-
acteristics (ROC) curves. The ROC curve is a 2D graph whose Y-axis represents 1 − fnr and
whose X-axis represents fpr, thereby depicting the compromises between the cost of ns→h and
nh→s.

8.3.5 Experimental Procedure
Treating each dataset independently, from each email of the six Enron-Spam datasets, sentinel
extracts the real-valued attributes using its text processing unit. Using a conventional stratified
10-fold cross-validation approach, the filter then generates for each dataset five classifiers using
the five algorithms described in Section 8.3.3. The classifiers are then evaluated. In a k-fold
cross-validation, the original dataset is randomly partitioned into k equal-sized folds or subsets.
Then each classifier is trained on k−1 folds and evaluated on the remaining fold. Stratification
means that the class (i.e., ham or spam) in each fold is represented in approximately the same
proportion as in the full dataset. The cross-validation process is then repeated until each of the
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Figure 8.1: Comparison of results of the classifiers generated by sentinel and other previous
studies.

k folds is used exactly once as the validation data. The final estimation of the classifier is the
average of the k results from the folds.

8.4 Results and Discussions

To evaluate anti-spam filters on Enron-Spam, scores described in Section 8.3.4 are almost
always averaged across the six datasets [3]. The Arithmetic Mean is the standard averaging
method used, regardless of the skewness present in the datasets (see Section 8.3.1), but we
have found that due to the presence of extreme data points, the Harmonic Mean provides a
more appropriate estimate than the arithmetic mean. That said, in this section, we report the
harmonic mean of the results found from the six datasets.

Measures such as precision, recall, and auc of the classifiers on Enron-Spam are presented
in Table 8.4. The notable result from the data is that rf, boosted rf, and bagged rf perform
evenly good, which is confirmed by a student t-test with α = 0.05. The tests further reveal that
the first three classifiers in Table 8.4 are better than svm and nb at α = 0.05. The best scores
achieved by sentinel are highlighted in the chart—except for recall, bagged rf has the best
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prec ± std. dev. rec ± std. dev. auc ± std. dev.
rf 0.961 ± 0.009 0.972 ± 0.006 0.991 ± 0.004

boosted rf 0.964 ± 0.009 0.977 ± 0.006 0.988 ± 0.005
bagged rf 0.971 ± 0.009 0.972 ± 0.007 0.996 ± 0.002
svm 0.942 ± 0.013 0.913 ± 0.008 0.919 ± 0.014
nb 0.889 ± 0.013 0.915 ± 0.008 0.966 ± 0.009

Table 8.4: Precision (averaged), recall (averaged) and auc of the five spam classifiers along
with their standard deviation.

numbers. Interestingly, the nb classifier has a better auc compared to that of svm at α = 0.05;
for the remaining cases, however, the latter performs the better. The near-perfect aucs of
the first three classifiers strongly suggest that sentinel did not achieve the results by merely
guessing everything either as spams (i.e., high nh→s but low ns→h) or hams (i.e., high ns→h but
low nh→s)—the filter was properly balanced during its labeling. The accuracy and F-score of
the classifiers can be found in Figures 8.1a and 8.1b, where they are compared to four state-of-
the-art personalized filters: lc [9], nb-bow [27], svm-bow [27], and icrm [20]. Again, the first
three classifiers of sentinel perform about equally well and surpass the rest. The filter that can
claim to be a reasonably close second is the lc filter inspired by artificial immune systems [9].
For these two measures, the differences between sentinel’s optimal classifier (bagged rf), and
lc are significant at α = 0.05.

The average fpr and fnr of sentinel can be found in Figures 8.1c and 8.1d, respectively. It
comes as no surprise that bagged rf and boosted rf perform the best—bagged rf misclassifies
hams the least (fpr=2.1%, see Figure 8.1c) while boosted rf misclassifies spams the least
(fnr=0.7%, see Figure 8.1d). In addition, sentinel is compared to three personalized filters
that are considered to be yardsticks: nb-tf [3], bayesian [14], and nb-slwe [28]. Except for
the nb-tf filter, the three best classifiers of sentinel significantly outperform these yardsticks.
Four of sentinel’s classifiers (the exception is nb) surpass the fnr of nb-tf, but only bagged rf
outperforms the fpr of nb-tf while our second best classifier—boosted rf—closely ties with
nb-tf; the fpr of bagged rf is lower than nb-tf but the difference is significant only at α = 0.10.

We further investigated the fpr and fnr achieved by our classifiers on each of the six
datasets (see Figure 8.2). Interestingly, rf exhibits strength similar to the meta-learners for
spam classification (Figure 8.2b) but its ability to identify hams diminishes when more spams
are included in its training data (Figure 8.2a)—specifically, for Enron 5 and Enron 6, even nb
outperforms it. svm’s performance shows that this classifier’s training data should be carefully
selected—with spam skewed training data its ham misclassification rate is as high as 17%. This
experiment also illustrates that the skewness of data has an effect on the training of anti-spam
filters—except for the aberrant trend displayed by the nb classifier likely due to the presence
of dependency among the attributes [23], the remaining classifiers misclassify fewer hams in
Enron 1–3 (ham skewed) and fewer spams in Enron 4–6 (spam skewed).
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(b) Spam misclassification rates (fnr) of the clas-
sifiers for the six datasets.

Figure 8.2: Ham and Spam misclassification rates of the classifiers on the Enron-Spam collec-
tion.

8.5 Conclusions

In this paper we describe the development and evaluation of a prototype personalized anti-
spam filter named sentinel. The filter uses natural language attributes, the majority being
connected to stylometric aspects of writing. We evaluate the filter with a benchmark person-
alized email collection called Enron-Spam. Five well-known learning algorithms that induce
binary classifiers using the real-valued natural language attributes of the emails are explored.
The experimental outcomes show that sentinel performs best with two meta-learners: boosted
rf and bagged rf. As well, the performance of sentinel surpasses that of a number of state-
of-the-art personalized filters proposed in previous studies. The evaluation therefore indicates
that the filter can be utilized as a personalized anti-spam filter.

We still need to investigate several aspects of the filter viz. its real-time training and re-
sponse latency. Moreover, its performance on Concept Drift can be observed by substituting
the spams of Enron-Spam collection with the latest data. These investigations are left as future
work.
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Chapter 9

Supervised Classification of Spam E-mails
with Natural Language Stylometry

This chapter is based on the paper titled “Supervised Classification of Spam E-mails with
Natural Language Stylometry” co-authored with Robert E. Mercer that has been submitted to
the Elsevier Expert Systems with Application. The journal paper is under review. This paper
combines and extends the ideas presented in Chapter 7 and 8.

In this paper, we report the development and evaluation of sentinel—an anti-spam filter
based on natural-language and stylometry attributes. The performance of the filter is evaluated
not only on non-personalized emails (i.e., emails collected randomly) but also on personal-
ized emails (i.e., emails collected from particular individuals). Among the non-personalized
datasets are CSDMC2010, SpamAssassin, and LingSpam, while the Enron-Spam collection
comprises personalized emails. The proposed filter extracts natural-language attributes from
email text that are closely related to writer stylometry and generate classifiers using multiple
learning algorithms. Experimental outcomes show that classifiers generated by meta-learning
algorithms like adaboostm1 and bagging are the best, performing equally well and surpassing
the performance of a number of filters proposed in previous studies, while a Random Forest
(rf) generated classifier is a close second. On the other hand, the performance of classifiers
using Support Vector Machine (svm) and Naı̈ve Bayes (nb) are not satisfactory. In addition,
we find much improved results on personalized emails and mixed results on non-personalized
emails.

9.1 Introduction

Spam emails are both unsolicited and massively posted commercial and non-commercial
emails. The effects of spams include but are not limited to the loss of individual and orga-
nizational productivity, chaotic user inboxes, Internet speed degradation, and misappropriation
of personal information. The onset of spams has grown exponentially. In March 2013, for in-
stance, approximately 100 billion spams were received by users everyday which is 98% more
than that from the previous quarter [1]. To date, most anti-spam filters are supervised tools
that trap spam emails by detecting some mundane patterns learned during their training [2, 3].
Usually, these patterns are generated from attributes collected either from email headers [4, 5]
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or from email text [6]. The filters generate classifiers from these attributes using algorithms
like Naı̈ve Bayes (nb) [4, 6, 7], Random Forest (rf) [8], Support Vector Machine (svm) [9] and
Neural Networks (nn) [10].

Spammers almost always introduce new techniques to bypass header-based anti-spam fil-
ters by originating their menacing emails from white-list sources. Spoofing text-based filters,
on the other hand, requires substantial efforts by the spammers. For example, one of the easiest
ways to detect spams is to search for spam terms in the email text. Spammers then simply
change their vocabulary to circumvent these text-based filters, as pointed out by [11]. The au-
thors reported that because of the cleverly removed spam terms, text-based filters tend to under-
perform over time. As a result, organization servers and personal inboxes are still overwhelmed
by spam emails and therefore classifying spam emails remains a challenging machine-learning
task.

[6] and [10] show that natural-language attributes of email subject and body have sub-
stantial ability to discern spams and hams. These attributes are based on the importance of
a term in the email (i.e., term frequency or tf), its rarity in the email dataset (i.e., inverse
document frequency or idf), and their normalized form (tf·idf). The advantage of exploiting
these attributes is that they perform well on personalized filters (see [6, 12]). However, they
are found to underperform on non-personalized emails [7]. Furthermore, the calculation of
tf·idf is done on the word-count space, so for each newly arrived email, this attribute needs
to be re-calculated. The re-calculation, if not done incrementally, can introduce latency. The
time-sensitivity of the data described earlier is also a reason not to rely on these term-based
attributes. Therefore, along with these, we need to exploit other natural-language attributes that
are more pervasive in nature. Among such pervasive attributes are those that are related to the
writer’s writing style. [13] and [14] showed that using writer stylometry and choice of words,
authorship of documents can be identified. This finding can be aligned with the problem in our
hand nicely because often, spammers write bulk emails to people by impersonating as a bank
manager, business partner, etc. which they are not. These attributes present in the stylometry
of emails are still unexplored in our problem domain. Among the stylometry attributes are text
readability, grammar and spelling mistakes, the use of function and content words.

In this paper, we report the development and evaluation of an anti-spam filter named sen-
tinel on both non-personalized and personalized emails. The bulk of the attributes used by
sentinel are natural-language attributes related to writer stylometry. Three standard, non-
personalized email datasets CSDMC2010, SpamAssassin and LingSpam, and six personalized
datasets in the Enron-Spam collection are used to train and test the filter. sentinel generates
classifiers using Random Forest (rf), Support Vector Machine (svm), and Naı̈ve Bayes (nb),
and two meta-algorithms called adaboostm1 and Bootstrap Aggregating (bagging) using rf
as the base classifier. Results show that adaboostm1 and bagging perform almost equally the
best while the performance of rf is a close second. Interestingly, the performance of svm de-
pends on the quantity of spams in the training set. nb has the poorest results of all—which
is understandable as most of the attributes are not independent. Comparisons show that the
performance of sentinel surpasses that of a number of filters proposed in previous studies. We
also find that the results on personalized emails are better to some extent compared to those on
non-personalized emails. Because writer stylometry is language-independent, sentinel may be
an excellent means to classify spam emails in any language.

The paper is organized as follows: in Section 9.2, we discuss some related work in the
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domain. Section 9.3 outlines the attributes, learning algorithms, evaluation measures, exper-
imental procedure, and describes the datasets. Results are discussed in Section 9.4. Finally,
Section 9.5 concludes the paper with directions to possible future work.

9.2 Related Work

As we are interested to see how our filter performs on both non-personalized and personalized
emails, in this section we describe work aimed at classifying emails from non-personalized and
personalized email datasets.

9.2.1 Non-personalized Filters

Non-personalized filters are developed to safeguard an email server from spam emails. These
filters are so called because their development and evaluation is done using randomly collected
spam and ham emails. The spam emails are generally collected from multiple spam-traps while
the ham emails are contributed by different individuals and thus do not characterize any partic-
ular user. Among the popular non-personalized datasets are CSDMC2010, SpamAssassin, and
LingSpam.

[8] investigated the performance of their anti-spam filter on the CSDMC2010 dataset.
Their filter is capable of generating multiple spam classifiers but unlike our approach, their
predictive models are based on traditional attributes found in email headers. Among the clas-
sifiers, they found that the one generated using rf outperforms the rest namely nb, Bayesian
Network, and svm. The authors, like many, conceived the spam classification performance as
a cost-sensitive analysis and used both conventional and cost-sensitive evaluation measures.
Likewise, [15] developed two filters—one of which is based on SVM while the other is gener-
ated using nb . The filters extract attributes from email content using a novel attribute selection
method based on a binomial distribution hypothesis testing called Bi-Test. When they com-
pared the filter performances on the CSDMC2010 and LingSpam datasets, they found that the
filters perform better on the former.

[10] developed an nn-based filter that uses 328 text attributes. On the SpamAssassin
dataset, their reported accuracy of 0.920 was reasonably good. The filter developed by [16]
also uses an nn classifier. The attributes chosen for their experiment are related to artificial
immune systems (ais). The filter has been reported to be accurate about 92% of the time on the
SpamAssassin dataset. Prior to that, [17] measured their filter performance on the SpamAs-
sassin dataset with a cost-sensitive evaluation. They found much improved results using data
compression techniques.

From our literature survey, we found that the reported performances of filters are relatively
low on the LingSpam dataset. [18], for instance, applied k-nnc and a data clustering algorithm
called birch on this dataset. Their tf·idf based filter, compared to the filters tested on other
datasets, achieved relatively low scores. [19] also found similar results on LingSpam when
they experimented with four popular content-based anti-spam filters in the domain.
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9.2.2 Personalized Filters

Unlike non-personalized filters, personalized anti-spam filters are aimed at protecting partic-
ular individuals. These filters learn through the choice of idioms and phrases, writing style,
variation of sentences, etc of the legitimate users. Therefore, to train and test these supervised
filters, personalized email data like those in the Enron-Spam collection are preferred.

The earliest of the personalized anti-spam filters were simple and computationally efficient
as they used a simple nb classifier. These filters exploited the simple Bayesian framework,
a set of rules, and both header and content attributes [20]. Likewise, they attained low mis-
classification rates on several datasets. The initial success of these filters led several others
to emerge and they simply replaced the hand-crafted rules with predictive models (see, for
example, [6, 7, 21, 22]). Several variations of these filters include multivariate Bernoulli, Bag
of Words (BoW), multinomial boolean, etc. [6], for instance, used 3000 multinomial boolean
tf attributes—the results reported by this study were highly impressive. Two years later, they
achieved even better results by using the transformed tf attributes [23]. Nowadays, the per-
formance of an nb filter is considered to be the de facto standard to compare newly developed
personalized filters.

svm filters are efficient for training in much the same way as nb filters, nevertheless it was
found by [24] that the filters need incremental training to reduce latency. Furthermore, svm
filters can handle large attribute sets and in many cases, attribute selection is not necessary [9].
Most of the benchmark svm filters use the frequency-based linear kernel. As well, there are
several svm filters that use updatable supervised clustering algorithms like the one reported
by [25]. However, despite the aforementioned pros of using svm-based filters, the trade-off is
high misclassification rate, especially for personalized emails.

The advantages of using meta-learning anti-spam filters are manifold. Firstly, when a base
learner with a sufficient tree depth is used, they achieve improved misclassification rates on
many public datasets [26]. Secondly, these filters are resistant to the problem of overfitting and
therefore they gain more appropriate accuracy even on an unbalanced dataset1 [27]. However,
these filters have the weakness of ensemble learning—the interpretation of results is difficult.
Studies show that meta-learning filters outperform many decision tree, nb, and svm filters.
Surprisingly, the use of meta-learning filters is still not as widespread as nb and svm filters.

Over the last decade, Artificial Immune System-based anti-spam filters have become a
popular choice. These filters use detectors on the email for pattern matching. Detectors are in
fact regular expressions that are defined a priori. Each detector is given a weight that is adjusted
as the filters recognize a pattern in a given email. The weights of the matching detectors are
then used (usually combined) to determine the email’s class label. Notable immune system-
based filters are reported by [12, 28, 29]. These filters seek specific signatures in the emails—
this is why they are widely used in personalized email classification where similar patterns can
be found in the writing style of the person the filter intends to protect. Also, many of these
filters are able to deal with Concept Drift—the gradual or abrupt change of thematic context
over time such as new advertisement themes in spam emails.

1Most of the public email datasets are unbalanced [24].
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Category QuantityDescription
Word-level Attributes 11 Spam words, Alpha-numeric words, Function words,

Verbs, tf ( [6, 23]), tf·isf, tf·idf.
Error Attributes 3 Grammar and spelling mistakes.
Readability Attributes 23 Simple and complex words, and their tf·idf, Fog index,

Simple and Inverse Fog index, Smog index, Flesch reading
ease score, Forcast, Flesch-Kincaid score, Email length,
Word length.

html Attributes 3 regular and anchor tags.

Table 9.1: The brief summary of the attributes used in our study: their categories, quantity, and
description.

9.3 Methods and Materials

9.3.1 Attribute Selection
Each email in our experiment is represented as (~x, y), where ~x ∈ Rn is a vector of n attributes
and y ∈ {spam, ham} is the label of the email. In our study for the LingSpam dataset, we
explored 36 attributes with one class attribute and therefore, n = 37. For the CSDMC2010
and SpamAssassin datasets, however, we considered three more attributes related to html tags
because the datasets contain them since they are not pre-processed (Table 9.4). Therefore,
for these two datasets, n = 40. Finally, for the Enron-Spam collection, in addition to the 37
attributes we used for the LingSpam dataset, we further explored a term frequency (tf) attribute
previously utilized by [6, 23]. Therefore, in our study for the Enron-Spam collection, n = 37.
Table 9.1 summarizes the attributes used in our experiment.

Word-level Attributes

We treated each email as a bag of words to calculate the word-level attributes. We curated a
dictionary that comprises 381 spam words. Using this dictionary, we counted the frequency
of spam words in the emails. This attribute is inspired by the interesting findings of [22] who
showed that merely finding the word click in the emails can detect 79.7% of spam emails in a
dataset with only 1.2% ham misclassification rate. Our other attributes in this category include
the frequency of alpha-numeric words, verbs, and function words. To identify the verbs in the
emails, we used the Stanford POS Tagger2. To identify function words, we utilized the stoplist
function of a topic indexer named Maui3.

In this category of attributes, we also included the term frequency (tf) attribute used by at
least two nb filters developed by [6, 23]. For each term which appears in at least four training
emails, information gain scores are computed according to the study conducted by [30]. Of
all the terms in the dataset, the 3000 with the highest scores are considered as the tf vector
for all the emails. Thereafter, should any of these 3000 terms be found in an email, the term’s

2Downloadable at http://nlp.stanford.edu/software/tagger.shtml
3Downloadable at https://code.google.com/p/maui-indexer/



www.manaraa.com

Chapter 9. 93

corresponding frequency value in the tf vector is first incremented and then normalized. Fi-
nally, the normalized value is used to calculate the probability score of the email according to
Bayes’ theorem. The overall method is well documented by [23]. Of note, the tf attributes
work well on personalized emails according to [6] and are less important for non-personalized
emails. Therefore, in this study, this attribute is only extracted from the personalized emails in
the Enron-Spam collection.

Furthermore, we computed the tf·isf of each email. Here, the term frequency (tf) is the
commonly used square root of the frequency of a term t in a sentence in an email M while
the inverse sentence frequency (isf) is a relative measure of whether t is common or rare in
the other sentences in M. This attribute is meant to reflect how important each t is to an M.
In addition, the measure controls for the fact that in an email, some terms are generally more
common than others. We also used the tf·idf of each email as an attribute. It is a numerical
statistic that reflects how important a term t is to an email M in the dataset D to which M
belongs. The tf·idf value increases proportionally to the number of times t appears in the email
M, but is offset by the frequency of t in the dataset D. The definition of tf is the same above
while inverse document frequency (idf) measures whether a given term t is common or rare in
the remaining emails in the dataset D.

Error Attributes

Our next set of attributes is related to the grammar and spelling errors present in the emails.
For each email, we simply counted the frequency of grammar and spelling errors using a Java
API called LanguageTool4. By summing up the values of these two attributes, we introduced
a third attribute in this category named Language Errors. It is to be noted that these attributes
are normalized separately for spams and hams. A traditional attribute normalization without
considering the class labels of the instances is not followed because it is expected that the
difference between the values of the attributes for spams and hams is large.

Readability Attributes

Readability is a measure of the difficulty of reading a sentence, a paragraph or a document. At
the heart of readability lies the notion of simple and complex words. Simple words are those
that have at most two syllables while complex words contain three or more syllables. Since
both types of words have a significant contribution for text readability, we have included both
in our attributes. Five standard scores use these two types of words to determine the readability
of a given text: Fog index, Smog index, Flesch reading ease score, Forcast, and Flesch-Kincaid
index. For each email, all five readability scores are computed and used as attributes. Also,
among the scores, Fog index measures the relative use of complex words in a document. We
modified the Fog index formula to measure the relative use of simple words in a document, and
considered this as an attribute, too. Furthermore, we considered the arithmetic inverse of Fog
index as another attribute. The other attributes in this category include email length (i.e., total
sentences in an email), average word length (i.e., total syllables over total terms in an email),
and tf·idf of the set of simple and the set of complex words.

4Available at: http://www.languagetool.org/java-api/
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Learning Algorithms Parameters
Random Forest Maximum Depth: UnlimitedNumber of Trees to be Generated: 10

Random Seed: 1
Boosted Random Forest Number of Iterations: 10 Random Seed: 1

Resampling: False Weight Threshold: 100
Bagged Random Forest Size of Bag (%): 100 Out of Bag Error: False

Number of Iterations: 10 Random Seed: 1
Support Vector MachineSVM Type: C-SVC Cost: 1.0

Degree of Kernel: 3 EPS: 0.0010
Gamma: 0.0 Kernel Type: Radial Basis
Epsilon: 0.1 Probability Estimates: False
Shrinking Heuristics: True

Naı̈ve Bayes Use of Kernel Estimator: False

Table 9.2: Parameter setup for the learning algorithms used in this experiment to generate
classifiers.

html Attributes

[6] suggested not to use the tracking of html tags to classify emails because examining a
phishing url can sometimes lead to unfortunate results, such as the user inbox becoming com-
promised by spammers. Therefore, instead of tracking the urls in the html tags, we are inter-
ested in counting them. We exploit attributes related to html tags only for the CSDMC2010
dataset as out of the four datasets only this one contains these tags. We extracted three html
based attributes from the emails of the CSDMC2010 dataset: (i) frequency of anchor tags (i.e.,
the number of close-ended tags <a> and </a>), (ii) frequency of tags that are not anchors (e.g.,
<p> or <br>), and (iii) total HTML tags in the emails (e.g., sum of (i) and (ii)). Each of these
features is normalized by the length of the email, N, which is the number of sentences in the
message. To identify HTML tags in the emails, we used a Java HTML parser called jsoup5.

Note that, the aforementioned attributes are computed by both including and excluding the
function words in the emails—the exceptions being the frequency of function words, tf, email
length, and tf·idf attributes. Analyzing the real valued attributes, we have found that their
distribution is either left-tailed or right-tailed. This skewness of attribute values, which leads
to poor classifiers, has been eliminated by using a logarithmic transformation of all the at-
tribute values. Once log-transformed, the distribution of the attributes becomes normal. Lastly,
for each attribute, except the error attributes described in Section 9.3.1, we perform attribute
normalization; the resulting normalized values are therefore in [0, 1].

9.3.2 Learning Algorithms
As found in the recent research of [4,8], rf is able to produce highly accurate spam classifiers.
Overall, rf classifiers also have the reputation for being fast and efficient with large data [31].
On the other hand, although it generates complex models, svm is a popular choice for anti-

5Downloadable at http://jsoup.org/download
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spam filters. The algorithm has notable performances with header features [4, 7–9]. nb is
also a widely used learning algorithm for anti-spam filters. It is simple yet provides powerful
spam detectors [6, 8]. In addition, on many occasions, nb using simple attributes like tf·idf
has even outperformed quality learning algorithms, like svm. Unlike the others, adaboostm1
and bagging are meta-learners that improve a given weak learning algorithm most of the time
[32,33]. In the following experiments, we have considered rf as the weak learner for these two
algorithms. Both adaboostm1 and bagging are simple, fast, and above all, are less susceptible
to overfitting the training data. And finally, their performances are better than algorithms like
nb and probabilistic tf·idf for text categorization tasks.

The parameters that we set for the algorithms are described in Table 9.2.

9.3.3 Experimental Procedure
Treating each dataset independently, sentinel extracts the real-valued attributes from each
email using its text processing unit. Using a conventional stratified 10-fold cross-validation
approach, the filter then generates for each dataset five classifiers using the five algorithms de-
scribed in Section 9.3.2. The classifiers are then evaluated. In a k-fold cross-validation, the
original dataset is randomly partitioned into k equal-sized folds or subsets. Then each clas-
sifier is trained on k − 1 folds and evaluated on the remaining fold. Stratification means that
the class (i.e., ham or spam) in each fold is represented in approximately the same proportion
as in the full dataset. The cross-validation process is then repeated until each of the k folds is
used exactly once as the validation data. The final evaluation measures of the classifiers are the
averages of the k evaluation measures from the folds. These evaluation measures are described
next.

9.3.4 Evaluation Measures
To evaluate anti-spam filters, a significant number of previous works rely on measures like
precision, recall, F-score, and accuracy [24]. The reporting of these measures is done according
to the confusion matrix given in Table 9.3. The measures are explained below.

Precision is the fraction of spam predictions that are correct and can be written as follows:

Precision =
ns→s

ns→s + nh→s
.

On the other hand, recall—also known as spam recall—examines the fraction of spam emails
being retrieved:

Recall =
ns→s

ns→s + ns→h
.

F-score (fm), simply, is the harmonic mean of precision and recall and can be calculated as
follows:

F − score =
2 × prec × rec
prec + rec

.

Accuracy, on the other hand, is the percentage of correctly identified spams and hams:

Accuracy =
nh→h + ns→s

nh→h + nh→s + ns→h + ns→s
.
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Actual
SpamHam

Prediction
Spam ns→s nh→s

Ham ns→h nh→h

Table 9.3: Confusion matrix for the spam classification problem.

Some of the aforementioned measures, however, can be seriously flawed when working
with datasets that have class imbalance problems. For instance, accuracy does not distribute
weights rationally to the majority and minority class rather it places more weight on the ma-
jority class than on minority class. This makes it difficult for a classifier to perform well on
the minority class. Moreover, email misclassification can be cost-sensitive considering that the
users might accept some spams to enter into their inbox but that they prefer their hams not end
up in the spam-traps. To overcome the problem with measures that cannot deal with the class
imbalance problem (e.g., accuracy) ham misclassification rate (fpr) and spam misclassification
rate (fnr) are also being used.

The ham misclassification (false positive) rate denotes the fraction of ham emails classified
as spams:

fpr =
nh→s

nh→s + nh→h
.

In contrast, the spam misclassification (false negative) rate is the fraction of spams delivered to
the user inbox:

fnr =
ns→h

ns→h + ns→s
.

The viable alternative to fpr and fnr is to report the Area Under the Curve (hereinafter,
auc), measured using the Receiver Operating Characteristics (ROC) curves. The ROC curve is
a 2D graph whose Y-axis represents 1− fnr and whose X-axis represents fpr, thereby depicting
the compromises between the cost of ns→h and nh→s.

Besides the aforementioned evaluation measures, we also used cost curves to report the
classification performance. The cost curves, indeed, are the projection of the slopes in the
ROC curves on the X-axis while the Y-axis is the expected misclassification cost. These curves
provide visualizations of 2-class classifiers over the full range of possible class distributions
and misclassification costs. That is, for skewed datasets, using these curves we can even say
how good a given classifier would perform if the class distributions were equal—50% of the
emails are spams and 50% of the emails are hams.

The details about the cost curves are described by [34, 35].

9.3.5 Datasets
For decades, several email datasets, viz., SpamAssassin, CSDMC2010, LingSpam and Enron-
Spam, have been used to gauge the performance of anti-spam filters. The first three datasets are
composed of randomly collected spam and ham emails over a given time period and therefore
are suitable for developing and testing non-personalized anti-spam filters. Enron-Spam, on the
other hand, is a collection of emails composed of six datasets each containing ham emails from
a single person.
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Dataset Ham:Spam Text
Pre-processed?

Year of Curation

CSDMC2010 2949 : 1338 No 2010
SpamAssassin 4149 : 1884 No 2002

LingSpam 2414 : 481 Yes 2000

Table 9.4: Brief description of the non-personalized email datasets: ham-spam ratio, whether
the texts are pre-processed, and the year of curation.

Ham + Spam Ham:Spam Time-stamp
Enron 1 (farmer-d + gp) 3672 : 1500 [12/99, 1/02] [12/03, 9/05]

Enron 2 (kaminski-v + sh) 4361 : 1496 [12/99, 5/01] [5/01, 7/05]
Enron 3 (kitchen-l + bg) 4012 : 1500 [2/01, 2/02] [8/04, 7/05]

Enron 4 (williams-w3 + gp) 1500 : 4500 [4/01, 2/02] [12/03, 9/05]
Enron 5 (beck-s + sh) 1500 : 3675 [1/00, 5/01] [5/01, 7/05]

Enron 6 (lokay-m + bg) 1500 : 4500 [6/00, 3/02] [8/04, 7/05]

Table 9.5: Brief descriptions of the Enron-Spam collection as described by [6]: composition of
the datasets, ham-spam ratio, and time-stamp.

CSDMC2010, among the four, is the latest collection of emails and has not been used
much. The spam rate of this dataset is reasonable—about 32%. In contrast, SpamAssassin is
one of the most popular datasets. The spam rate of this dataset is almost equal to that of the
CSDMC2010 dataset. The LingSpam dataset is both the smallest and oldest dataset that we
consider. Its spam rate is also smaller than the others—only about 17%. It is the odd one out
of the three non-personalized datasets because the hams in this dataset are collected from the
discussions of a linguistics forum; the spams, on the other hand, are collected randomly. Table
9.4 summarizes these datasets.

The ham collections of Enron-Spam are named: farmer-d, kaminski-v, kitchen-l,
williams-w3, beck-s, and lokay-m. The spams are collected from three different sources.
First, a mix of spams that are collected from the SpamAssassin corpus and spam traps of
the Honeypot project6 are put together; these spams are dubbed as sh. Second, bg spams
are collected from the spam traps of Bruce Guenter7. Third, spams are collected randomly
from the mailbox of Georgios Paliouras (gp) [6]. The foregoing six ham email collections
are each paired with one of these three spam collections (sh, bg, and gp). Thereafter, the six
collections are dubbed as Enron 1 to Enron 6. Of the six collections, Enron 1–3 are ham skewed
(ham:spam is 3:1) while Enron 4–6 are spam skewed (ham:spam is 1:3). The summary of the
characteristics of the Enron-Spam collection can be found in Table 9.5.

During the development of the Enron-Spam dataset, [6] noticed that spam emails have
some attributes that can too easily distinguish them from hams and therefore they should be
pre-processed. To remove these attributes, the following pre-processing steps are considered.
First, the subject field of spams can contain symbols such as $ or !. As well, they contain spam

6Consult with http://www.projecthoneypot.org
7Overview at http://untroubled.org/spam
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words such as porn, webcam, or lottery. Therefore, such entries are excluded from the subject
fields of the emails. Second, many emails in the datasets can contain an attachment field. If
it exists, this extraneous field is removed from an email. Third, non-ASCII characters in the
email text are removed since the values of our natural language attributes are affected by their
presence.

The reasons for choosing these datasets are manifold. Firstly, they contain emails sent out
between 2000 and 2010. This provides an interesting test-bed that characterizes the change
of language of both spams and hams spanning across a decade. Secondly, we include spam-
skewed datasets in our experiment (i.e., Enron 4-6) because previously, many works reported
that although an anti-spam filter can do well on ham classification using ham-skewed datasets
like CSDMC2010, SpamAssassin, LingSpam, and Enron 1-3, its performance on spam classi-
fication can be seriously flawed (see, for example, [17]). Thirdly, we include LingSpam in our
dataset because not only are its hams domain-specific but the hams are also excerpts of schol-
arly discussions on linguistics. We believe that the results of our stylometric approach with
this dataset will be interesting to the anti-spam community. Fourthly, we include datasets that
are popular and reported by many (SpamAssassin and LingSpam) as well as those that are not
explored by as many (CSDMC2010 and Enron-Spam). Last but not least, it is one of our goals
to investigate the performance of sentinel on both non-personalized and personalized emails.

9.4 Results and Discussions

9.4.1 Performance on Non-personalized Emails
In this section, we report the traditional as well as cost-sensitive evaluation of sentinel on
the non-personalized email data. The most remarkable result to emerge from the data is that
for all datasets, bagging generates classifiers that have the lowest ham misclassification rates
(fpr) while the classifiers generated by adaboostm1 have the lowest spam misclassification
rates (fnr). These results can be found in Table 9.6. Given the results, it is difficult to decide
which classifier is better. A good way to report the best-performing classifier is to refer to a
balanced measure of the two misclassification rates: the auc. As can be seen in Figures 9.1
and 9.3, of the two, the bagged rf classifiers have the better auc. Table 9.6 also summarizes
that of all the datasets, sentinel misses hams the least (fpr= 1%) on the LingSpam dataset. On
the other hand, the lowest fnr achieved by the filter is about 7% on the SpamAssassin dataset.
Besides, the results with svm and nb are below expectations. The reasons to underperform

Classifiers fpr fnr

rf 0.040 0.092
adaboostm1 0.030 0.089
bagging 0.021 0.107
svm 0.028 0.390
nb 0.101 0.396

(a)

Classifiers fpr fnr

rf 0.035 0.093
adaboostm1 0.027 0.079
bagging 0.023 0.099
svm 0.052 0.292
nb 0.104 0.558

(b)

Classifiers fpr fnr

rf 0.018 0.162
adaboostm1 0.017 0.162
bagging 0.010 0.193
svm 0.014 0.341
nb 0.219 0.277

(c)

Table 9.6: Ham misclassification rates (fpr) and spam misclassification rates (fnr) of sentinel
on (a) CSDMC2010, (b) SpamAssassin, and (c) LingSpam Dataset.
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Figure 9.1: Comparison of (a) F-score and (b) auc of the classifiers generated by sentinel and
classifiers from previous studies on the CSDMC2010 dataset.

for a standard algorithm like svm are further investigated in Section 9.4.2. In our analysis we
found that the attributes are highly correlated which contradicts the naive assumption of the nb
alogrithm. This apparent dependency among the attributes can be attributed to the algorithm’s
poor performance.

The F-score and auc of the five classifiers of sentinel on CSDMC2010 dataset are compared
to that found by three recently-proposed, cutting-edge filters: rf-header [8], nb-bitest, and
svm-bitest [15]. Unexpectedly, sentinel is outperformed by all three filters in terms of F-score
as shown in Figure 9.1a. Also, a student t-test with α = 0.05 confirms that the differences
are statistically significant. A possible explanation for this can be found in Table 9.6: the
spam recall (1−fnr) of sentinel’s classifiers are much higher than that achieved by the filters.
However, when it comes to cost-sensitive analysis, sentinel performs more ideally—its bagged
rf classifier’s auc outperforms rf-header and nb-bitest; svm-bitestwith a reported auc of 0.995
is the only exception. These comparisons are summarized in Figure 9.1b.

Similarly, the accuracies of the classifiers of sentinel, and two standard filters named text-
nn [10] and ais-nn [16] are compared. Figure 9.2 shows that all of our ensemble-classifier
accuracies are better than text-nn and ais-nn. The differences found in the accuracies are
significant at α = 0.05.

Finally, for the LingSpam dataset, the F-scores of sentinel are compared with two more fil-
ters called birch [18] and nb-bitest [15]. We found that all the F-scores of sentinel’s classifiers,
except that induced by nb, are better than the birch filter. On the other hand, the F-score of nb-
bitest, however, is better than sentinel but only at α = 0.10. The comparison is found in Figure
9.3a. In a similar way, the auc of sentinel is compared with that reported by ppm [19] and nb-
bitest [15]. As shown in Figure 9.3b ppm performs the best in terms of auc and the ensemble
classifiers of sentinel are close seconds. Again, the differences are statistically significant at
α = 0.05.

The cost curves of the classifiers generated by sentinel for the three non-personalized
datasets are shown in Figures 9.4, 9.5, and 9.6. The cost curves are a good means not only
to explore the expected cost associated with the classifiers but also their performance for dif-
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Figure 9.2: Comparison of accuracy of the classifiers generated by sentinel and classifiers from
previous studies on the SpamAssassin dataset.

ferent ham-spam ratios in the datasets. Before we discuss further, please note that the X-axis
of the curves denotes the probability cost, i.e., x = 0.5 illustrates the situation where the num-
bers of spams and hams in the dataset are equal and trivial classifiers are those that identify all
emails either as hams or spams.

As anticipated, the poor performances of the svm and nb classifiers are captured by the cost
curves, too. For any ratio of ham and spam emails, the normalized expected costs associated
with these two classifiers are very high (Figures 9.4, 9.5, and 9.6). According to the cost
curves, the remaining classifiers perform much better for all ratios of ham and spam emails.
However, we observe differences in their performances for different datasets. For instance,
the adaboostm1 classifier is expected to perform better than the bagged rf and rf classifiers
if the majority of the emails are spams in the CSDMC2010 and SpamAssassin datasets (i.e.,
when Probability Cost > 0.5 in Figures 9.4 and 9.5). Interestingly, had these two datasets
contained more spams, we could have expected that rf would have outperformed bagging.
This observation is confirmed according to the Figures 9.4 and 9.5, where rf starts to perform
better than bagging at some point after Probability Cost > 0.5. On the other hand, for the
LingSpam dataset, the rf classifier can be expected, in most of the cases, to outperform both
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Figure 9.3: Comparison of (a) F-score and (b) auc of the classifiers generated by sentinel and
classifiers from previous studies on the LingSpam dataset.

the bagged rf and adaboostm1 classifiers regardless of the skewness in the dataset (Figure 9.6).

9.4.2 Performance on Personalized Emails
Traditionally, the studies on Enron-Spam report the performances of their filters by averaging
the scores described in Section 9.3.4 across the six datasets [6]. In doing so, they almost
always have used the arithmetic mean. However, our tests reveal that like other cutting-edge
filters [6,23], our proposed filters perform completely opposite for Enron 1-3 (hams are missed
less often because more hams are in the training data) and Enron 4-6 (spams are missed less
often because more spams are in the training data). These extreme trends in the performances
are exhibited in Figure 9.7 where the reported values for the six datasets largely vary. Such
extreme points affect the overall average if it is calculated using the arithmetic mean. The
viable alternative for the averaging is then the harmonic mean which reduces the effect of
outliers on the average. That said, in this section, we report the harmonic mean of the results
found from the six datasets.

The accuracy and F-score of the classifiers can be found in Figures 9.8a and 9.8b, respec-
tively. It can be noted that the values reported here for personalized emails are significantly
better than the values reported in Section 9.4.1 for non-personalized emails. We also com-
pared the accuracy and F-score to that found by four benchmark personalized email filters:
lc [12], nb-bow [36], svm-bow [36], and icrm [28]. The two ensemble classifiers of sentinel
perform about equally well and surpass the performances of the rest. The filter that can claim
to be a reasonably close second is the lc filter inspired by artificial immune systems [12]. The
differences between sentinel’s optimal classifier (bagged rf), and lc are significant at α = 0.05.

The average email misclassification rates of sentinel can be found in Figures 9.8c and 9.8d,
respectively. bagging and adaboostm1 perform the best—bagging misclassifies hams the least
(fpr=2.1%, see Figure 9.8c) while adaboostm1 misclassifies spams the least (fnr=0.7%, see
Figure 9.8d). In addition, sentinel is compared to personalized filters that are used as yardsticks
in the domain: nb-tf [6], bayesian [21], and nb-slwe [37]. Except for the nb-tf filter, the two
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Figure 9.4: Cost curves of the five classifiers generated by sentinel on the CSDMC2010
dataset.

ensemble classifiers of sentinel outperform the rest. Four of sentinel’s classifiers (except nb)
surpassed the fnr of nb-tf but the fpr of our second best classifier—adaboostm1—ties with nb-
tf; the fpr of bagging is higher than nb-tf—the difference, however, is statistically significant
only at α = 0.10.

Further tests on each of the six datasets reveal that the skewness of data has a detrimental
effect on the training of anti-spam filters. For instance, except for the aberrant trend displayed
by the nb classifier, the remaining classifiers misclassify fewer hams in Enron 1-3 (ham skewed)
and fewer spams in Enron 4-6 (spam skewed). This experiment also suggests that rf exhibits
a similar ability to the meta-learners for spam classification (see Figure 9.7b). However, its
ability to identify hams diminishes when more spams are included in its training data (see
Figure 9.7a)—even so that for Enron 5 and 6, it is outperformed by nb. Overall, the results
indicate that an svm classifier is more sensitive to the skewness of the training data hence the
training set should be carefully selected. With spam-skewed training data an svm classifier’s
ham misclassification rate is as high as 17%. Similarly, with ham-skewed training data the
spam misclassfication rate nears 18%.

We have investigated the expected performance of the classifiers on each dataset. Although
we have produced cost curves for all the classifiers for the six datasets in the Enron-Spam col-
lection, we present only the cost curves of the two best classifiers: adaboostm1 and bagging.
These cost curves can be found in Figures 9.9 and 9.10. From the curves, it is evident that we
can expect that our classifier performances will vary for different ratios of hams and spams.
What is interesting in these curves is that not only is the ratio of ham to spam playing a role
in expected performances, but also the spams themselves. Note that the spam-skewed datasets
display similar curves for both classifiers, and show similar spreads among themselves. Stylo-
metric differences among the spams in these three datasets may be the cause for these obser-
vations. The ham-skewed datasets produce similar curves, but they are more tightly bundled.
Even though the hams are from personal mailboxes, they are more likely to be stylometrically
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Figure 9.5: Cost curves of the five classifiers generated by sentinel on the SpamAssassin
dataset.
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Figure 9.6: Cost curves of the five classifiers generated by sentinel on the LingSpam dataset.
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Figure 9.7: (a) Ham misclassification rates and (b) spam misclassification rates of the five
sentinel-generated classifiers on the Enron-Spam collection.
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Figure 9.8: Comparison of the performances on the Enron-Spam collection of the five classi-
fiers generated by sentinel and classifiers from previous studies.
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Figure 9.9: Cost curves for the adaboostm1 classifiers generated for the six datasets in the
Enron-Spam collection.
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Figure 9.10: Cost curves for the bagged rf classifiers generated for the six datasets in the
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Figure 9.11: The incremental (a) ham misclassification rates and (b) spam misclassification
rates of the sentinel classifiers on the Enron-Spam collection.

similar because they are business-related. Some influence, albeit diminished because of the
underrepresentation of spams, comes from the spams. Four of the curves are in a narrow band
when Probability Cost = 0.5.

Lastly, we evaluated the performance of sentinel on the stacks of the six datasets. We gen-
erated two sets of stacks and following is the process of generating first set of stacks: starting
with the stack composed of Enron 1, one dataset (in numerical order) is added to the previous
stack. This process of creating the dataset stacks continues until Enron 6 is combined with
Enron 1-5. Thus, the number of hams dominates up to the third stack and the ratio of spams
and hams becomes closer to 1 after adding Enron 6 to the stacks of Enron 1-5. The second set
of stacks is generated as follows: starting with the stack composed of Enron 6, one dataset (in
reverse numerical order) is added to the previous stack. This process of creating the dataset
stacks continues until Enron 1 is combined with Enron 6-2. Thus, the number of spams dom-
inates up to the third stack and the ratio of spams and hams becomes closer to 1 after adding
Enron 1 to the stacks of Enron 6-2.

As we evaluated sentinel on the stacks, it is evident that on a numerically balanced dataset,
the best ham misclassification rate is achieved by bagged rf followed by adaboostm1, rf, svm,
and nb while the best spam misclassification rate is achieved by adaboostm1 followed by rf,
bagged rf, svm, and nb (see Stack 6 in Figures 9.11 and 9.12). Interestingly, we found that in
addition to class imbalance in the datasets, the performance of sentinel depends on two other
factors: the sources of the emails and the number of training emails for each class. A case
in point, a notable change in ham misclassification rates can be observed for the first three
reverse stacks (Figure 9.12a), even though the ratio of spams to hams in the three stacks is the
same (i.e., 3:1). There are three differences among the stacks: the number of spam emails,
the number of ham emails, and the email sources. This clearly suggests that besides the class
imbalance problem, the email source and the number of training emails may have an influence
on our filter’s performance.
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Figure 9.12: The reverse incremental (a) ham misclassification rates and (b) spam misclassifi-
cation rates of the sentinel classifiers on the Enron-Spam collection.

9.5 Conclusions

In this paper we describe the development and evaluation of an anti-spam filter named sentinel.
The filter uses natural-language attributes, the majority being connected to stylometric aspects
of writing. The real-valued, natural-language attributes extracted from the email texts are used
to generate binary classifiers. The classifiers explored in this study are induced by five state-
of-the-art learning algorithms. We evaluate the filter with benchmark non-personalized email
datasets such as CSDMC2010, SpamAssassin, and LingSpam as well as standard personal-
ized emails like those in the six datasets of the Enron-Spam collection. The evidence from
extensive experiments implies that the classifiers that perform the best are of two ensemble
methods: adaboostm1 and bagging. In general, the performance of sentinel is mixed on non-
personalized email data. This result is not unexpected because our findings demonstrate that
the filter has limitations for non-personalized email data—mainly due to the absence of unique
writing patterns in the randomly collected emails. Contrary to this, on personalized email data,
sentinel surpasses the performances of a number of state-of-the-art personalized anti-spam fil-
ters. These outcomes imply that the attributes related to writer stylometry can better capture
the imprinted patterns in personalized hams. One limitation of the filter is that its performance
is affected by the extreme proportions of spams and hams in non-personalized datasets. On a
good note, the filter is not affected at all by this factor on personalized datasets.

Our work clearly has some limitations. Firstly, several aspects of the filter, viz., its real-
time training and response latency are not considered. It will require extensive tests to confirm
sentinel’s usability as an on-line filter. Secondly, personalized datasets share an interesting
phenomenon called concept drift which is yet to be investigated. The reaction of the proposed
filter with respect to this phenomenon can be tested by substituting the spams of the Enron-
Spam collection with more recent data.

Because our results suggest that ensemble methods perform the best, further tests should
be carried out to see the performance of the filter by stacking several algorithms to generate its
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classifiers. Future studies can extend the work by replacing the supervised algorithms used in
this study with semi-supervised learning algorithms.

Bibliography
[1] Commtouch, “Internet threats trend report,” tech. rep., Commtouch, USA, April 2013.

[2] E. Blanzieri and A. Bryl, “A survey of learning-based techniques of email spam filtering,”
Artificial Intelligence, vol. 29, pp. 63–92, Mar. 2008.

[3] J. Goodman, G. V. Cormack, and D. Heckerman, “Spam and the ongoing battle for the
inbox,” Communications ACM, vol. 50, pp. 24–33, Feb. 2007.

[4] Y. Hu, C. Guo, E. W. T. Ngai, M. Liu, and S. Chen, “A scalable intelligent non-content-
based spam-filtering framework,” Expert Systems with Applications, vol. 37, pp. 8557–
8565, Dec. 2010.

[5] J.-J. Sheu, “An efficient two-phase spam filtering method based on e-mails categoriza-
tion,” International Journal of Network Security, vol. 9, no. 1, pp. 34–43, 2009.

[6] V. Metsis, I. Androutsopoulos, and G. Paliouras, “Spam filtering with naive Bayes —
Which naive Bayes?,” in Third Conference on Email and Anti-Spam (CEAS), (USA),
p. 9pp, 2006.

[7] C.-C. Lai and M.-C. Tsai, “An empirical performance comparison of machine learning
methods for spam e-mail categorization,” in Fourth International Conference on Hybrid
Intelligent Systems, HIS ’04, (USA), pp. 44–48, IEEE Computer Society, 2004.

[8] A. Qaroush, I. M. Khater, and M. Washaha, “Identifying spam e-mail based-on statistical
header features and sender behavior,” in CUBE International Information Technology
Conference, (USA), pp. 771–778, ACM, 2012.

[9] M. Ye, T. Tao, F.-J. Mai, and X.-H. Cheng, “A spam discrimination based on mail header
feature and SVM,” in Fourth International Conference on Wireless Communications, Net-
working and Mobile Computing (WiCom08), pp. 1–4, 2008.

[10] Q. Ma, Z. Qin, F. Zhang, and Q. Liu, “Text spam neural network classification algorithm,”
in 2010 International Conference on Communications, Circuits and Systems (ICCCAS),
(China), pp. 466–469, 2010.
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Chapter 10

Protein interaction sentence classification
with natural language stylometry

This chapter is based on the paper titled “Protein interaction sentence classification with natural
language stylometry” that is submitted to the BMC Bioinformatics. The paper is still under
review process.

Protein-protein interaction is secondary biomedical information pivotal to understanding
critical biological processes like DNA replication, signalling pathways, and cell cycle control.
Large numbers of these interactions can be found in biomedical research articles. However,
the number of published articles is increasing so rapidly in this field that manual curation of
protein interactions from them becomes difficult. This results in a significant amount of such
information remaining hidden in the articles. Therefore, it is necessary to target automatic
extraction of protein interaction information.

The success of automatic protein-protein interaction extraction depends on the identifica-
tion of candidate sentences, that is, those sentences containing an interaction relation between
two proteins. In this paper, we report a novel supervised approach that can classify candidate
sentences with substantial recall. The reported approach is different than most others found
in classic studies. Rather than using syntactic and semantic aspects of sentences, we exploit
natural language stylometry which is the linguistic study of writing styles of authors. The writ-
ing styles are represented as attributes, called the stylometric attributes, that are extracted from
the sentences of five standard biomedical datasets. With these attributes, supervised models
are then induced by cascading 1-Nearest Neighbour with Naı̈ve Bayes. These models classify
sentences into one of two classes: candidate or non-candidate sentences. Evaluation of the
classification made by the proposed approach with the gold standards shows that it performs
better than the benchmarks set on some of the datasets.

This research has two major contributions. First, to the best of our knowledge, only two
datasets have sentence-level annotations to denote the presence or absence of protein interac-
tions. Three more datasets are successfully annotated and validated in this research. We believe
that they can be used as test beds for many text mining tools. Second, we establish stylometric
attributes as a means to identify protein interaction sentences in biomedical research articles.
The key advantage of these attributes is that they are related to the writing style of authors and
do not depend on syntax or semantics present in the text.

111
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10.1 Background

Librarians, especially curators of databases, face the demanding task of identifying relevant
secondary biomedical information from primary sources, viz., research articles. Such informa-
tion includes but is not limited to genetic etiology of diseases, genotype-phenotype relations,
protein interactions and sequencing, and biomolecular interactions. Databases that contain
these various information types include MINT [1], BIND [2], and Swiss-Prot [3]. Interest-
ingly, to bypass errors during data population, most of these databases are curated manually.
However, the number of research articles published annually in the biomedical domain is al-
ready overwhelming and the number is increasing every year making this manual curation of
information ever more difficult. Moreover, much important information stays hidden in the
articles not because of curation error only but also due to the difficulty in extracting accurate
information from long text documents [4].

The identification of protein interaction containing sentences in biomedical publications is
considered to be one of the unresolved pattern recognition problems [5]. Throughout this pa-
per, the sentences bearing a protein interaction are called the candidate sentences; the rest are
called the non-candidate sentences. The success of this classification is salient to the detection
of the interacting protein pairs in research articles. Therefore, a number of previous studies
address the problem of candidate sentence classification. For instance, in their comparative
study, Sugiyama et al. [6] construct binary classifiers using K-nearest neighbours [7], decision
tree [8], neural network [9], and Support Vector Machine (svm) [10]. These classifiers exploit
attributes related to verbs, nouns, and the part-of-speech (pos) tags present within a 20-word
radius. This work shows that svm classifiers are highly effective for the classification task. The
effectiveness of kernel-based classifiers like svm for this task is also supported by the work of
Mitsumori et al. [11] and Erkan et al. [12]. The former work identifies candidate sentences
using word level attributes while the latter uses similarities of the paths present between two
protein names found in the dependency parses of the sentences. Of note, Erkan et al. [12] is
the first semi-supervised classification approach for this domain. Taking a different approach,
Polajnar et al. [13] show that a non-parametric probabilistic classifier called the Gaussian Pro-
cess [14] has strength similar to svm but better than that of Naı̈ve Bayes [15]. They use several
bag-of-words and protein named entity attributes derived from biomedical abstracts. The key
advantage of their method is the use of simple attributes that do not require the dependency
parsing used in [12]. They also apply a semi-supervised approach [5] to enable the use of a
large quantity of unlabelled data with the same set of attributes. However, in contrast to their
earlier work [13], their modelling of the co-occurrence of words is achieved by applying two
unique semantic spaces [16]. Yet another class of approaches target the syntactic properties of
text with full or shallow parsing (see, for instance, Yakushiji et al. [17]). However, the perfor-
mance of these syntactic-based approaches is limited by the choice of off-the-shelf software
components like context-free grammar parsing tools.

In this paper, we aim to classify protein interaction sentences and not to detect interacting
protein pairs in biomedical research articles. In doing so, we view the task as a supervised bi-
nary classification problem where the two classes are candidate sentences and non-candidate
sentences, where the former contains a protein interaction while the latter does not. We choose
103 attributes that are related to natural language stylometry. Stylometry is the linguistic study
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Figure 10.1: Cost curves of the classifiers for five datasets.

of authors’ writing styles. Using stylometric attributes is a popular method to represent writing
style patterns of article authors. The motivation for the use of these attributes is that when
they put important information in their articles, writers change their writing style for these in-
formative sentences [18]. Protein interactions are pivotal information and therefore the style
present in sentences that describe them should be different than others. Moreover, our past stud-
ies [19] [20] [21] suggest that stylometric attributes have substantial advantages over syntactic
and semantic attributes for biomedical relation mining and text classification. To the best of
our knowledge, the set of attributes used in this research is novel for the classification task pre-
sented here. As test beds, we choose five standard biomedical datasets named BioNLP [22],
BioDRB [23], FetchProt [24], AIMED [12], and Christin-Brun (CB) [12]. We annotate the
first three datasets using two automated tools followed by human validation, while the last two
datasets, already in use for the candidate sentence extraction task, are human annotated. Each
sentence in the datasets is represented as a vector of the 103 stylometric attributes. For each
dataset, we use a multi-stage classification, cascading 1-Nearest Neighbour with Naı̈ve Bayes,
to generate models with these attributes. The models are then used to classify a sentence as a
candidate or non-candidate sentence. Using a 10-fold cross validation, we evaluate the perfor-
mance of each model against the gold standard annotations. Experimental outcomes show that
our approach has a remarkable recall. Overall, our approach outperforms the benchmarks set
for the AIMED and CB datasets.

10.2 Results and Discussion

To report the performance of stylometric attributes for protein interaction candidate sentence
classification, we carried out extensive tests. The results are described in this section by us-
ing both cost-insensitive measures like precision, recall, and F-score as well as cost-sensitive
measures like Cost Curves and Receiver Operating Characteristics (roc) curves.
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Dataset Classifier Precision (%) Recall (%) F-score (%)
BioNLP Multi-stage 76.9 92.6 84.0
BioDRB Multi-stage 64.6 90.9 75.5
FetchProt Multi-stage 39.0 96.1 55.5
AIMED Multi-stage 53.3 74.7 62.2
AIMED tsvm [12] 59.6 60.70 60.0
AIMED Rule-based [17] 33.7 33.1 33.4
AIMED svm [11] 54.2 42.6 47.7

CB Multi-stage 88.9 93.7 91.2
CB tsvm [12] 85.6 84.9 85.2

Table 10.1: Precision, recall, and F-score of our approach for the five datasets. Comparisons
for the AIMED and CB datasets are also illustrated.

10.2.1 Cost-insensitive Analysis
First, we discuss the performance of our approach for classifying protein interaction sentences
from research articles using cost-insensitive measures like precision, recall, and F-score. The
three datasets that we annotate for this experiment (BioNLP, BioDRB, and FetchProt) were
used previously for tasks that are completely different than our task. Therefore, there is no
benchmark set for these three datasets. However, observing the current state-of-the-art work
of Erkan et al. [12] we can argue that our approach performs reasonably well on these three
datasets. We compare our work directly with Erkan et al. [12] on the remaining datasets:
AIMED and CB.

Table 10.1 strongly suggests that our approach has remarkably high recall maintaining com-
petitive, albeit low, precision—for all datasets except AIMED, the recall is above 90%. Another
interesting observation can be that for all but the AIMED dataset, our approach achieves better
recall than precision. The anomalies regarding the AIMED dataset appear to be well substanti-
ated by the findings of Faiz and Mercer [25] who have conducted a comparative study and show
that the sentences of the AIMED dataset are more complex than the other benchmark datasets.
The high recall values found in our tests are striking since they demonstrate the efficiency of
our approach to classify a significant fraction of protein interaction sentences present in the
datasets. The foremost cause of low precision is due to the class imbalance problem in the
datasets (see Table 10.2). Note however that the recall is more important than the precision in
tasks like protein interaction sentence classification. F-score is the harmonic mean of precision
and recall. The low precision dominates the F-score in our case.

Interestingly, we get both the highest recall (96.1%) and the lowest precision (39.0%) for
the FetchProt dataset. A reasonable explanation for this result can be that the FetchProt dataset
has the smallest imbalance ratio (see Eqation 10.1 and Table 10.2). Due to the presence of
a large number of non-candidate sentences in the dataset, our approach misclassifies many
non-candidate sentences as candidates. Consequently, the lowest F-score of our approach is
recorded on this dataset (55.5%). On the other hand, on the CB dataset our approach exhibits
the best precision (88.9%) and it is noted that this dataset is more balanced than the rest. This
precision and the second best recall (93.7%) result in our best F-score (91.2%) to be found on
this dataset.



www.manaraa.com

Chapter 10. 115

Dataset Total Sentences Candidate
Sentences

Non-
Candidate
Sentences

Imbalance
Ratio

BioNLP 6857 1735 5122 0.34
BioDRB 4704 975 3729 0.26
FetchProt 73954 12504 61450 0.20
AIMED [12] 4026 951 3075 0.31
CB [12] 4056 2202 1854 1.19
Total 93597 18367 75230 0.24

Table 10.2: Brief summary of the datasets used in this experiment.

We compare our results on the AIMED and CB datasets with that found by Erkan et al. [12]
who apply a semi-supervised svm (tsvm). The comparisons are made with a paired t-test with
a significance level set to 5% (i.e., α = 0.05). On the AIMED dataset, in contrast to their recall
(60.7%) and F-score (60.0%), our recall (74.7%) and F-score (62.2%) are significantly better.
The only case where their method outperforms our approach is the precision on the AIMED
dataset (59.6% vs. 53.3%). Note that the F-scores on this dataset reported by Yakushiji et
al. [17] and Mitsumori et al. [11] are 33.4% and 47.7%, respectively—these are significantly
lower than our F-score reported in Table 10.1 (62.2%). Similar results are found on the CB
dataset. In both precision and recall, our approach outperforms the results reported by Erkan
et al. The F-score recorded on this dataset is 91.2% which is significantly better than their
F-score of 85.2%.

10.2.2 Cost-sensitive Analysis

Table 10.2 clearly shows that the datasets used in this experiment are unbalanced and except
for the CB dataset, their imbalance ratio is less than 1 (i.e., they contain more non-candidate
sentences). A cost-sensitive analysis with Cost Curves [26] [27] can give us an idea whether
results similar to those in Table 10.1 can be found if the datasets were balanced.

Figure 10.1 illustrates the cost curves of the classifiers we generated from five datasets. The
X-axis of the plot denotes the probability cost while the Y-axis denotes the normalized expected
cost associated with the classifiers. In other words, a value on the Y-axis at X= 0.5 reveals the
expected misclassification cost of a classifier when presented with an equal number of candi-
date and non-candidate sentences. The results highlight that had the datasets contained more
candidate sentences, the misclassification rate for candidate sentences by our classifiers would
have decreased. What is surprising is that the situation is completely opposite for the AIMED
dataset. The cost curves are almost stationary. This indicates that the misclassification rate of
our approach will not be significantly affected by the presence of more candidate sentences.
To confirm that rebalancing the classes will not change the misclassification rates, we have
run a significance test on the curves with confidence interval set to 95% and found that this
assumption is true for all the datasets except FetchProt and AIMED. This also explains the low
precisions that we report on the FetchProt and AIMED datasets in the Cost-insensitive Evalu-
ation section. Note that in terms of misclassification cost for a balanced dataset (i.e., X=0.5 on
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Figure 10.2: ROC curves of the classifiers for five datasets.

the plot), our approach performs the best on BioNLP followed by CB and BioDRB.
Similar results are found from the roc curve analysis of our classifiers on the five datasets

(see Figure 10.2). The plot strongly indicates that our approach gains the best recall with the
lowest false positive rate (the rate that denotes the fraction of non-candidate sentences that
are misclassified) on the BioNLP dataset. Among the rest, our approach misclassifies almost
equally on the BioDRB and CB datasets. The recall on the FetchProt dataset becomes almost
equal to the recalls found on the aforementioned datasets but at the expense of a larger false
positive rate. The performance of our approach in terms of gaining recall at the expense of
false positives on the AIMED dataset is not satisfactory.

10.3 Conclusions

An important initial step for successful protein-protein interaction extraction is first to classify
candidate sentences that describe protein interaction relations. The evidence from this study
strongly suggests that stylometric attributes are strong contenders for classifying candidate sen-
tences. Our approach is different than most classical approaches that depend on the syntax or
semantics of text. In this study, we use stylometric attributes that portray the writing styles
of authors. Our experiments are extensive as to evaluate the attributes’ performance, we use
five standard biomedical datasets: BioNLP, BioDRB, FetchProt, AIMED, and CB. Among the
datasets, however, only the last two had been used for the protein interaction sentence classi-
fication task. Therefore to start with, we prepared the first three datasets by annotating them
with a rule-based and a supervised machine-learned annotator and validating the annotations
with two human domain experts. Tests show that the level of annotation agreements is fair on
the Landis and Koch scale [28].

Each sentence of the five datasets is represented as a vector of stylometric attributes. For
each dataset, the attributes are used to train a multi-stage classifier that involves 1-Nearest
Neighbour and Naı̈ve Bayes. The models generated by the classifiers are thereafter used to
classify the sentences of respective datasets into candidate and non-candidate sentences. Test
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results are encouraging and show that our approach has a remarkable recall. We compare our
approach to several contemporary supervised and semi-supervised methods, and we find that
our approach is a clear improvement.

We are aware that our approach may have two limitations. Firstly, the precision of our
approach is low, particularly for two datasets. Test results show that this is possibly a result of a
high class imbalance present in the datasets and the level of difficulty involved in their sentence
structure. Secondly, all the datasets used in this study have been annotated by automated tools
and later validated by humans. Therefore, there is always the possibility that the tools misjudge
the sentence labels. However, the number of sentences dealt with in this study is large and we
accept this limitation of the tools when balanced against the workload required for human
annotations.

Despite some minor limitations, our research can be a constructive method for classifying
protein interaction sentences as a first step for protein-protein interaction extractors. In our
view, the results reported constitute an excellent initial step toward the protein-protein interac-
tion extraction task.

10.4 Methods

We use five standard biomedical datasets. A brief description of the datasets are given in
this section. Two of the datasets are already annotated for the protein interaction sentence
classification task. The rest have been curated for other purposes and do not contain annotations
required for this task. The annotation of these three datasets and the validation process are also
discussed. This section also lists and describes the stylometric attributes in this research. As
well, we outline the design of the classifiers, the experimental procedure, and the performance
measures.

10.4.1 Datasets

We use five standard biomedical datasets to classify candidate sentences that describe protein
interactions. The datasets we use are BioNLP [22], BioDRB [23], FetchProt [24], AIMED [12],
and Christine-Brun (CB) [12]. The first three datasets (BioNLP, BioDRB, and FetchProt) con-
tain raw texts and do not have any annotations at the sentence level. We choose these datasets
since they are used extensively for the protein-protein interaction extraction task and there-
fore contain a good number of candidate sentences. The last two datasets (AIMED and CB)
have sentence-level annotations [12]. These two datasets have candidate sentence classification
benchmarks set for them and therefore make it possible for us to gauge the performance of our
approach.

Description

BioNLP is composed of 40 full-length articles that were used for five different shared tasks
at the BioNLP–2011 Challenge. We collect the articles from the training, development and
test sets of that task. This dataset contains approximately 6, 857 sentences with an average
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of 171 sentences per article. BioDRB, on the other hand, is not, strictly speaking, a protein-
protein interaction dataset. It is composed of 24 full biomedical articles that are annotated with
discourse relations. However, we find that this dataset contains a reasonable number of protein
interactions, making it a good source of candidate sentences. The BioDRB dataset contains
approximately 4, 704 sentences with 196 sentences per article on average. FetchProt comprises
190 articles of which 140 describe experimental evidence for tyrosine kinase activity for at least
one protein. Out of the 190, we keep 169 articles and discard the rest as they have improper
text formatting issues. This reduced dataset contains 73, 954 sentences and each article on
average contains about 438 sentences. Note that FetchProt is the largest of the five datasets that
we use. The AIMED and CB datasets contain 4, 026 and 4, 056 sentences, respectively. The
annotations for these two datasets were accomplished by using supervised machine learning
approaches followed by a careful inspection by human curators [12]. A brief summary of
the five datasets can be found in Table 10.2. The right-most column of the table shows the
imbalance ratio in the datasets that can be defined as follows:

Imbalance Ratio =
# Candidate Sentences

# Non-Candidate Sentences
. (10.1)

Annotation

As we stated earlier, the BioNLP, BioDRB, and FetchProt datasets are not annotated at the
sentence level, and we need to annotate each sentence of these datasets with one of the two
labels: candidate and non-candidate. We use two automated tools for this annotation task
and two human domain experts for validation. A description of the annotation task and the
validation follows.

Annotation Tools We use a state-of-the-art rule-based relation miner called RelEx [29] to
automatically annotate the BioNLP, BioDRB, and FetchProt datasets. It extracts candidate
relations, which are later filtered, by applying three simple rules on the dependency parse
trees [30] generated from each sentence. As well, we use a machine learning version of RelEx
called WRelEx [25]. This tool extracts three types of attributes from the dependency trees
of sentences: (i) dependency, (ii) syntactic and (iii) surface level attributes. With these at-
tributes, WRelEx generates a binary maximum entropy classifier to identify relations in the
sentences. We choose these tools for the annotation because of their very good performances
on biomedical data. RelEx, for instance, was evaluated with a comprehensive dataset of 1 mil-
lion MEDLINE abstracts and it achieved 80% precision and 80% recall. WRelEx, on the other
hand, was evaluated with five protein interaction datasets: AIMED, BioInfer, HPRD50, IEPA,
and LLL and in most cases, it outperformed RelEx (for details, see [25]).

The two annotating tools use different text processing resources. Therefore, we have tai-
lored them both so that they use common resources. As a case in point, the LingPipe machine
learning API [31] is integrated with RelEx and WRelEx so that both tools detect common
sentence boundaries. This particular shared feature is necessary because a failure to detect
common sentence boundaries can lead to inappropriate comparisons between the two tools. As
another example, the Genia Tagger [32] is combined with the tools to detect proteins in the
texts. WRelEx has adopted, like RelEx, to use the Stanford dependency parser [30] to gen-
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Label tab Sentence newline
Positive \t Like FAK, it lacks obvious protein interaction domains,

and has also been implicated in the activation of ERK and
JNK MAPKs

\n

Negative \t The signaling pathways activated by NaCl are less clear \n

Table 10.3: Annotation format for the datasets. The tools annotate each sentence with its label
followed by a tab, the sentence itself and a newline.

erate dependency parse trees for each sentence. The annotations made by the tools are based
on their respective working principles—RelEx uses its rules and WRelEx uses its maximum
entropy model. Table 10.3 shows the simple annotation format that the annotator tools follow
with a positive and a negative example: the positive example refers to a candidate sentence and
the negative example refers to a non-candidate sentence.

To judge the reliability of the automatic annotations, we use the standard reliability mea-
sures: Cohen’s Kappa (κ) [33] and Krippendorff’s Alpha (α) [34]. The κ and α values for the
annotations done by the two tools are equal to 0.99, where a 1.00 indicates perfect agreement.
The confusion matrix for their annotations can be found in Table 10.4. According to the anno-
tation agreements, the tools make very few Type I and Type II errors, and disagree on only 6
sentences. These sentences are re-annotated individually by two human annotators—one is the
author of WRelEx and the other is an author of this paper. From their double-blind reviews, for
all six sentences, the human annotators agree with the annotation made by WRelEx. So, the
annotations made by WRelEx are chosen as the automatic annotations for the three datasets.

Annotation Validation The annotation agreements in Table 10.4 show that the three datasets,
BioNLP, BioDRB, and FetchProt, are negatively skewed (i.e., they contain more non-candidate
sentences). For these skewed datasets, overly optimistic κ and α values can be found simply
because the annotator tools can agree 82% of the time by tagging everything as non-candidate
sentences. Therefore, we need humans to validate these machine annotations. To accomplish
this, we engage two human experts (biochemistry graduate students who study protein-protein
interactions) to re-annotate a statistically representative subsample of the datasets.

To calculate the size, n, of a statistically representative sample, we use the formula in
Equation 10.2.

n = [
zα/2σ

E
]

2
. (10.2)

Here, n is the sample size; zα/2 is the critical value (i.e., the positive z value that is at the vertical

RelEX
+ − Total

WRelEx
+ 15209 2 15211
− 4 7030070304

Total152137030285515

Table 10.4: Confusion matrix for the dataset annotation by RelEx and WRelEx.
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Figure 10.3: Probability Histogram for 1000 samples of (a) BioNLP, (b) BioDRB, and (c)
FetchProt corpus. The histograms show the normality of the distributions.

boundary for the area of α/2); σ is the population standard deviation; and E is the maximum
allowed difference between the sample mean x̄ and the population mean µ. For this study, we
set zα/2 = 1.96 for 95% confidence and a significance level of α = 0.05, and E = 0.03. This
gives us the sample sizes, n, for each of these datasets (see Table 10.5).

For each dataset, we then randomly generate 1, 000 samples of the appropriate size n and
calculate the mean of their individual sample mean distributions, population means, sample
standard deviations, and population standard deviations. Using these descriptive statistics and
the three characteristics of the hypothetical distribution of sample means, we validate that the
samples are representative of the populations as follows:

1. The mean of the distribution of sample means µx̄ should be close to the mean of the
population of the individuals µ. Table 10.5 shows that the sampling meets this criterion
as µx̄ and µ are almost equal for each corpus.

2. The standard deviation of the distribution of sample means σx̄ should be less than the
standard deviation in the population of individuals, σ. In other words, σx̄ ≈

σ
√

n . From
Table 10.5, we can see that the sampling meets this criterion as well.

3. A plotted probability histogram (i.e., a histogram produced from the distribution of sam-
ple means) should be approximately normal for a sample size of n >= 30. Figures 10.3a,
10.3b, and 10.3c show the probability histograms for each dataset; their normality shows
that this characteristic has been satisfied by the sample.

One of these 1, 000 samples of 351 sentences has been given to two human experts for
re-annotation. For a fair re-annotation, we make sure that the experts (i) annotate the sentences
in an uninterrupted environment; (ii) annotate blindly—one expert is not allowed to see the
annotations made by the tools or by the other human expert; (iii) annotate the sentences in two
different sessions for a test/retest evaluation; (iv) have a sufficient gap between the sessions so
that they do not annotate from memory in the second session; (v) feel comfortable about the
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Dataset Mean of
Sample

Means, µx̄

Population
Mean, µ

Samples
SD, σx̄

Population
SD, σ

Sample
Size, n

BioNLP 0.25 0.25 0.03 0.40 152
BioDRB 0.20 0.21 0.04 0.44 115
FetchProt 0.17 0.17 0.04 0.36 84
Total 351

Table 10.5: Statistics to validate the representativeness of the samples for the datasets.

time constraint so that they do not get fatigued; and (vi) get compensated for their participation
since voluntary work sometimes does not meet the expected quality.

We measure the standard φ correlation coefficient of each human annotator for their anno-
tations in Session 1 and Session 2. This gives their individual intra-annotator agreements for
each dataset. Table 10.6 shows that for each dataset the humans have almost similar φ-values,
except for the BioDRB dataset. A post-annotation discussion with Human 1 provides an ex-
planation for this anomaly as the annotator admitted that his confidence level was low for his
Session 1 annotation. Otherwise, the similarities between the φ-values show that the humans
are reasonably consistent with their annotations. According to the scales proposed by Landis
and Koch [28], the humans agree with themselves moderately with φ >= 0.40.

To measure the inter-annotator agreements, we consider the φ coefficients between the
annotations of each session by the humans and the tools, and average them. To find their
average, we use Fisher’s Transformation [35] to convert the φ’s to the corresponding z’s which
are then averaged and converted back to give us ρ—the average of two correlation coefficients.
We measure the ρ for inter-human annotations in a similar way. Table 10.7 illustrates the
ρ’s among the annotators. The inter-human measures show that the humans have moderate
agreements (i.e., ρ >= 0.40) while the humans and machines have fair agreement (i.e., 0.20 <
ρ < 0.40 except for the aforementioned BioDRB dataset).

Confusion matrices to measure the correlations in Table 10.7 show that the tools correctly
identify most of the non-candidate sentences as indicated by the human annotators. As the
datasets contain more non-candidate sentences than candidate sentences, recognizing a good
number of non-candidate sentences indicates the quality of the tools’ annotations.

To understand better some of the results, we requested the human annotators to answer

Dataset Human 1 vs.
Human 1

Human 2 vs.
Human 2

BioNLP 0.64 0.61
BioDRB 0.40∗ 0.65
FetchProt 0.81 0.80

∗From a post-annotation feedback, we came to know that human 1 was not fully confident with annota-
tions for session 1, especially with the sample from BioDRB.

Table 10.6: Intra-annotator correlation measures. The measures show the moderate agreement
between the human annotators.
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Dataset Human 1 vs.
Machine

Human 2 vs.
Machine

Human vs.
Machine

Human 1 vs.
Human 2

BioNLP 0.35 0.40 0.37 0.44
BioDRB 0.06 0.27 0.16 0.49
FetchProt 0.32 0.40 0.36 0.67

Table 10.7: Inter-annotator correlation measures. The measures show that the human-human
agreement is moderate while the human-machine agreement is fair.

8 questions at the end of the sessions. The first 7 of these 8 questions are meant to report
their confidence in the annotations, their familiarity with biomedical terms encountered in the
sample, and their comfort level during the task. These questions require the annotators to
provide a number between 1 and 5 inclusive, where a 1 denotes the lowest and 5 denotes
the highest level of confidence/familiarity/comfort level. The last question seeks whether the
annotators used any off-the-shelf software in the case of finding unfamiliar terms in the sample.
Table 10.8 shows the summary of the feedback we received from the annotators. Interestingly,
although the annotators were highly confident before the start of the sessions, as it began, they
report a decrease in their confidence. The confidence of Human 1, especially, is the lowest for
the first session and this has been reflected in the results in Tables 10.6 and 10.7. However,
both annotators regain their confidence in session 2. Overall, Human 2 is more confident
with her annotation. The skewness of the datasets do not affect the humans as they are almost
equally confident with candidate and non-candidate sentences. Both annotators report that their
familiarity with biomedical terms is high and even if they needed help to resolve unfamiliar
terms in the sample, they did not use any off-the-shelf software (e.g., Google or biomedical
named entity recognizers). As a consequence, the human-machine agreements reported in
Table 10.7 are not as high as human-human agreements. Some of this low performance can
be attributed to Genia Tagger, used by the annotator tools, has its own limitations, as well. Its
errors in not finding protein names are propagated to the annotator tools.

10.4.2 Attribute Selection

Each sentence in the five datasets is represented as (~x, y), where ~x ∈ R103 is a vector of the 103
stylometric attributes and y ∈ {candidate, non-candidate} is the label of the sentence. Table
10.9 summarizes the attributes used in our experiment. The details of the attributes are as
follows.

Text Complexity Attributes

Text complexity attributes examine the readability level of sentences. Two of the major com-
ponents to measure text complexity are the use of simple words and complex words. Simple
words are those that have at most two syllables while complex words contain three or more
syllables. These two types of words are widely used to measure standard scores to assess the
reading difficulty level of sentences. Among these scores, five developed by psychologists and
linguists are considered as attributes in our experiment. These scores are Fog index, Smog
index, Flesch reading ease score, Forcast, and Flesch-Kincaid index. Fog index measures the
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No. Question Human 1 Human 2
1. Confidence at the start of annotation 4 5
2. Confidence with your annotation for the first

session
2 3

3. Confidence with your annotation for the
second session

5 4

4. Confidence with your annotation for both
sessions

3 4

5. Familiarity with the biomedical terms in the
sample

4 5

6. Comfort level for labelling a sentence as
“candidate”

4 4

7. Comfort level for labelling a sentence as
“non-candidate”

5 4

8. Use of any third party tool (e.g., google,
biomedical taggers) if the category (e.g.,
protein) of any term in the sample was
unknown

no no

Table 10.8: Post-annotation feedback from the annotators.

proportion of complex words in a unit of text. In addition, we modify the Fog index formula
to measure the relative use of simple words in a document and consider that as an attribute,
too. Furthermore, we consider the arithmetic inverse of the Fog index as another attribute. The
details of the attributes related to readability level are beyond the scope of this paper and are
discussed elsewhere [20]. The other attributes in this group are quite self explanatory. They
include average word length (i.e., the ratio of total syllables to total words in a sentence) and
number of syllables present in a sentence. As well, we consider two boolean attributes named
long and short sentence where long sentences are called those that contain more than 20 words,
short sentence otherwise. There are 28 attributes in this group.

Word-level Attributes

Our second group of 68 attributes are related to the words of a sentence that do not contribute
to text complexity. To calculate the word-level attributes, each sentence is treated as a bag of
words. Word count, as its name suggests, is the length of each sentence. Several software
functions are developed to deal with word-level attributes like function word, content word,
biomedical Named Entity (ne), biomedical verb, and semantic word. For instance, our stoplist
function utilizes a dictionary of function words used in the English language to categorize a
word into either function or content word. Secondly, each word is checked with the Genia
Biomedical Tagger [32] to identify biomedical named entities. Of note, the protein names in
the datasets are masked and do not count as a biomedical named entity since a priori knowledge
like the presence of proteins in a particular sentence perhaps bias our experiments. Thirdly, a
verb-list function uses a dictionary of verbs that are frequently present in biomedical articles.
Fourthly, our semantic word list function identifies words that are nodes in the UMLS semantic
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Group Attribute Nos.Attributes
Text Complexity 28 Fog Index, Monosyllabic Fog Index, Inverse Fog Index,

FORCAST, SMOG, FKRI, Flesch, Complex Word, Simple
Word, Word Length, Syllable Frequency, Long Sentence
(boolean), Short Sentence (boolean)

Word-level 68 Word Frequency, Function Word, Content Word, Named
Entity, Alpha-numeric, Biomedical Verb, Acronym,
Semantic Word, All-alphabets, All-numeric, Lowercase,
Uppercase, Long Word, Unique Word, Repeated Word,
Conjunction, Number, Determiner, Preposition, Adjective,
Noun, Pronoun, Adverb, Verb, Interjection, Foreign, List,
Possessive, Particle, Symbol

Character-level 7 Character Frequency, Character per Word, Character
without Whitespace, Special character

Table 10.9: Set of stylometric attributes used in the experiment.

relation network [36] (i.e., one of the 133 semantic types in the network). This software func-
tion requires WordNet [37] to find words with similar senses. Finally, to identify acronyms, a
dictionary containing the biomedical acronyms is exploited using an acronym-list function. The
other word-level attributes are self explanatory. They include alpha-numeric, all-alphabets, all-
numeric, lowercase, uppercase, long word (i.e., words with more than five characters), unique
word (used only once in a sentence), and repeated word (used multiple times in a sentence).
As well, we also consider the pos of the words as attributes. In doing so, the Stanford pos
tagger is used to tag words with their pos. The set of pos-based attributes includes conjunction,
number, determiner, preposition, adjective, noun, pronoun, adverb, verb, interjection, foreign,
list, possessive, particle, and symbol. The details about these pos tags can be found in the Penn
Treebank’s tag description [38]. Note that the bulk of the attributes used in this experiment
come from this group.

Character-level Attributes

We also extract several character-level attributes such as total characters including and exclud-
ing whitespaces, characters per word, and special characters. The number of attributes that we
consider from this group is 7.

10.4.3 Classifier Design
To generate classifiers for each of the datasets, we use an interesting idea of multi-stage clas-
sification or cascading classifiers [39] [40] which are available in the Weka machine learning
toolkit [41]. Cascading classification is a special case of ensemble learning. Here, more than
one classifier is concatenated by utilizing the information found from the output of any given
classifier as additional information for the next classifier in the cascade. One key difference
between cascading classifiers and voting or stacking ensembles is that the former group is
multi-stage learning while the latter are multiexpert learning methods. This multi-stage de-
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Figure 10.4: Learning curves to show the best value of k for k-Nearest Neighbour classifier.

sign of classifier generation is chosen since it is often faster as well as better-performing than
ensemble learners and only requires simple learners in its cascade.

In this experiment, we design a two-stage classification. The first stage involves a k-Nearest
Neighbour classifier (with k = 1) [7] that considers each vector of attributes representing the
sentences in each of the datasets. Then, the classifier calculates the probabilities that the vector
belongs to the candidate and non-candidate classes. These probabilities, which are normally
used by the classifier model to predict the label of the vector by classifying the vector to the
class with the highest probability, are then fed forward as extra attributes to the Naı̈ve Bayes
classifier [15] at the second stage. The choice of k is made based on the learning curve. We vary
the value of k from 1 to 30 and plot the training and validation error rates made by the Naı̈ve
Bayes classifier. The training and validation error rates made by the Naı̈ve Bayes classifier are
calculated using the following equation.

Error Rate =
Nx→c + Nc→x

Nc→c + Nx→c + Nc→x + Nx→x
. (10.3)

From the learning curve in Figure 10.4, we find that with k = 1 both the training and validation
error are the lowest. Therefore, our first stage in the cascade becomes a 1-Nearest Neighbour
classifier.

The 1-Nearest Neighbour classifier uses normalized Euclidean distance to find the training
instance closest to the given test instance and predicts the same class as this training instance.
If multiple instances have the same (smallest) distance to the test instance, the first one found
is used. The Naı̈ve Bayes classifier uses estimator classes. Weka chooses numeric estimator
precision values based on an analysis of the training data and therefore the version of Naı̈ve
Bayes that we use in this experiment is not updatable. The parameters used in our experiment
to design the multi-stage classifiers are provided in Table 10.10.
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Classifier Parameters

1-Nearest Neighbour

No. of neighbours: 1
Best k value selection: Using Training Data

Distance weighting: None
Nearest neighbour search algorithm: Linear nn Search

(Distance function: Euclidean, Skip identical instances:
False)

Window size: 0

Naı̈ve Bayes
Kernel estimator: None

Supervised discritization: Yes

Table 10.10: Parameter setup for the learning algorithms used in this experiment to generate
classifiers.

Actual
CandidateNon-candidate

Prediction
Candidate Nc→c Nx→c

Non-candidate Nc→x Nx→x

Table 10.11: Confusion matrix for the protein interaction sentence classification problem.

10.4.4 Experimental Procedure

Treating each dataset independently, the values for the 103 stylometric attributes are com-
puted for each sentence. These attributes are then used to generate a 1-Nearest Neighbour
model. This model, when applied on the entire dataset, produces two probability distributions
of candidate and non-candidate sentences. These distributions are then used as two additional
attributes at the next stage, and altogether, the 105 attributes are then used to generate a Naı̈ve
Bayes model. Performance is tested using a stratified 10-fold cross-validation approach. That
is, the sentences of each dataset are randomly divided into 10 equal-sized sets. Each one is
used for evaluation and the rest for construction of a Naı̈ve Bayes model. Stratification means
that the classes (i.e., candidate and non-candidate) in each set are represented in approximately
the same proportion as in the full dataset. This cross-validation process is then repeated until
each of the 10 folds is used exactly once as the validation data. Finally, average evaluation
values of the 10 tests are reported.

10.4.5 Evaluation Measures

To evaluate the performance of our approach, we report cost-insensitive measures like preci-
sion, recall, and F-score and cost-sensitive measures such as Cost Curves and Receiver Op-
erator Characteristics (roc) curves. All of the measures reported in this paper depend on the
confusion matrix given in Table 10.11.
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Cost-insensitive Measures

The binary classifiers predict the class of each sentence in the datasets as either a candidate
or non-candidate sentence. Then its precision is calculated as the number of correct candidate
sentence predictions divided by the total number of sentences it labels as candidate sentences.
The recall of the classifier, on the other hand, is calculated as the number of correct candidate
sentence predictions divided by the number of candidate sentences. To average the precision
and recall, their harmonic mean is considered which is called the F-score. The calculations are
as follows:

Precision =
Nc→c

Nc→c + Nx→c
, (10.4)

Recall =
Nc→c

Nc→c + Nc→x
, (10.5)

F-score =
2 × Precision × Recall

Precision + Recall
. (10.6)

Cost-sensitive Measures

Table 10.2 indicates that other than the CB dataset, all of the datasets have class imbalance
problems: they have many more non-candidate sentences than candidate sentences. Besides
precision, recall, and F-score, we report the performances using two other cost-sensitive evalu-
ation measures, namely the Cost Curves [26] [27] and the Receiver Operating Characteristics
(roc) curves. They are related. Indeed, a cost curve is the projection of the slopes in the
corresponding roc curve on a plane’s X-axis while the Y-axis represents the expected misclas-
sification cost. Cost curves provide visualizations of binary classifier performance over the
full range of possible class distributions and misclassification costs. That is, for imbalanced
datasets, using these curves we can predict how good a given classifier would perform if the
class distributions were equal—50% of the sentences are candidate and 50% of the sentences
are non-candidate sentences. On the other hand, roc curves plot the recall vs. the false positive
rates (fpr). Recall can be found from Equation 10.5 and fpr denotes the total non-candidate
sentences misclassified by the classifiers divided by the total non-candidate sentences. The
latter can be calculated as follows:

False Positive Rate =
Nx→c

Nx→c + Nx→x
. (10.7)

roc curves are particularly helpful to observe the gain in recall with the compromise of fpr of
binary classifiers for imbalanced datasets (see [42] for details).
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Chapter 11

Summary Sentence Classification using
Stylometry

This chapter is based on the paper titled “Summary Sentence Classification using Stylometry”
co-authored with Robert E. Mercer. We are expecting to submit the paper in the 2015 North
American Chapter of Association of Computational Linguistics (NAACL) Conference.

Summary sentence classification is an important step to generate document surrogates
known as summary extracts. The quality of an extract depends much on the correctness of this
step. We aim to classify summary sentences using a statistical learning method that models
sentences according to a linguistic technique which examines writing styles, known as Stylom-
etry. The sentences in documents are represented using a novel set of stylometric attributes.
For learning, an innovative two-stage classification is set up that comprises two learners in sub-
sequent steps: k-Nearest Neighbour and Naı̈ve Bayes. We train and test the learners with the
newswire documents collected from two benchmark datasets, viz., the CAST and the DUC2002
datasets. Extensive experimentation strongly suggests that our method has outstanding perfor-
mance for the single document summarization task. However, its performance is mixed for
classifying summary sentences from multiple documents. Finally, comparisons show that our
method performs significantly better than most of the state-of-the-art summarization methods.

11.1 Introduction

One of the challenges to lessen the effect of today’s information overload [1] is producing
summaries automatically that are short in length, concise in nature, and rich in language prop-
erties [2]. In general, summaries are produced either from a single document or from multiple
documents. Extracts are summaries that are constructed by using copy and paste of text units
such as clauses, sentences, and paragraphs from source texts [3]. On the other hand, abstracts
are summaries that are re-generated by relating these text units using textual cohesion and en-
tailment. Overall, an extract is useful to understand the main idea of a source text while its
abstract is better for conceptualizing the subject matter [4]. Empirically, the summarizers that
simply extract salient sentences from source texts perform better for large-scale applications
and therefore receive much of the attention [5]. Keeping this in mind, we put the focus of
this paper on extracts—and not on abstracts—that are generated from both single and multiple
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documents.
Summary sentences are sentences chosen as text units to be included in extracts [3]. The

classification of summary sentences from source texts can be seen as a binary classification
problem in statistical learning. Over the last decade, an array of methods have been proposed
on this topic and on a good note, many are regarded as the domain’s state-of-the-art [5]. These
methods use classical attributes, viz., rhetorical structure [4], sentence position in the text [6],
and the presence of keyphrases in sentences [7], as well as novel attributes, such as, lexical
chains [8], n-gram models [9], and semantic graphs [10] [11].

In their study, Lloret and Palomar [12] showed that to classify summary sentences a lin-
guistic theory named the Code Quantity Principle [13] can be considered. According to this
principle, the codification of important information in text by humans so that this information
gets more attention is a process that combines human cognition, psychology, and language.
The principle states that the most important information within a text contains more lexical
units such as syllables, words, and phrases [14]. These units, and many others, are also the
key elements of stylometry—the application of the linguistic study to model writing styles in
texts. Now, by definition summary sentences are more important than non-summary sentences.
Therefore, modelling them using stylometry should result in a good classification.

In this paper, we report on a method to classify summary sentences using stylometry. We
model the sentences of a set of documents using 87 stylometric attributes and use these at-
tributes as features for a two-stage classification technique comprising the k-Nearest Neighbour
and Naı̈ve Bayes classifiers. The documents are collected from two benchmark datasets for
single and multi-document text summarization named the CAST datasets [15] and the DUC2002
collection [16]. Results show that our method has outstanding performance for single docu-
ment summarization; the performance for multi-document summarization is somewhat mixed.
Comparisons show that the proposed method yields much better results than most of the state-
of-the-art summarization methods.

The next section describes work related to this research. Following that, Section 11.3 dis-
cusses the datasets used and outlines the methods we followed. Results of this work can be
found in Section 11.4. Finally, Section 11.5 draws conclusion to this paper.

11.2 Related Work

Many studies have reported state-of-the-art summary sentence classification methods. We,
however, limit our discussions by relating our work to those that have used the same summa-
rization data as ours.

Berker and Güngör [8] proposed a very simple yet powerful method to generate extracted
summaries. They used lexical chains to represent lexical cohesion in a document as attributes.
The attribute values were then weighted according to a genetic algorithm. These weights were
then used to rank order the sentences in the document. Finally, the sentences with higher
ranks were selected for the summary. To train and test the method, the CAST dataset was
used. Overall, the method worked remarkably well. Importantly, the authors compared the
performance of lexical chain attributes with that of classical summarization attributes such as
sentence location and length, similarity to title, synonymy, and co-occurrence. The outcomes
of this comparison were interesting and the study concluded that lexical chains can be an
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effective means to classify summary sentences.
In their extensive study, Villatoro-Tello et al. [9] argued that most frequency-based at-

tributes (i.e., sentence position, word frequency, or cue words) are domain-specific. Instead
of these well-known attributes, they used an n-gram model to represent sentences. Note that
n-gram models are widely used for text categorization tasks, and this work is the first that at-
tempts to use them to generate text summaries. The results of the models were competitive on
the CAST dataset. The authors also compared their model with a baseline and a single word
model. In both cases, the n-gram model performed better.

Lescovek et al. [10] proposed an interesting method: to represent documents as semantic
graphs. A semantic graph of a document, known as the document graph, is a combination of
the logical forms of its sentences. The logical forms are merely the popular subject-predicate-
object (SPO) representation of a text unit. For each document and its summary, the method
generated two semantic graphs—one for the original document and one for its summary pro-
duced by human accessors. A Support Vector Machine (SVM) classifier was trained on the
document graphs to identify the SPO triples in them that are also present in the correspond-
ing summaries. Finally, the classifier was evaluated on test documents. To train and test this
graph-based method, the CAST [15] and the DUC [16] were used. The outcomes of this study
were remarkable and showed an overall improved summary sentence classification. Later, the
authors re-generated the document graphs using the linguistic structures around the noun and
verb phrases as additional components to the SPO triples (see [11]). Similar to their first ex-
periment, these additional components also improved their method’s overall performance.

The Columbia summarizer is a very well-known operational text summarizer [17]. It has
been a regular participant in the Document Understanding Conferences (DUC) and is recog-
nized as one of the benchmark summary tools. The summarizer has two major components:
MultiGen [18] to generate summaries from single-event documents and Dissimilarity Engine
for Multidocument Summarization [19] to generate summaries from documents on multiple
events. It has been evaluated on the DUC summary sentence extraction tasks. On an average, its
performance was in the top three among the 10 submitted systems.

11.3 Materials and Methods

11.3.1 Summarization Data
We have used two benchmark datasets in this experiment. One of them has summary sen-
tences from single documents while the other contains summary sentences from multiple doc-
uments. Nevertheless, documents included in both of the datasets are written in English and
are newswire articles on different topics like politics, economics, sports, and natural disasters.

The CAST dataset [15] was developed as a part of the Computer-Aided Summarisation Tool
project to aid humans to generate single document summaries from newswire articles. Overall,
the dataset contains 147 newswire articles from the Reuters Corpus [20]. Four human anno-
tators were used to mark 15% of the document sentences as essential and an additional 15%
as important for the summary. In this study, we call the first set of documents CAST-15 each
of which contains 15% of their sentences marked as essential and the second set of documents
CAST-30 each of which contains 30% of their sentences marked as essential and important.
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Dataset Total Sentences Summary Sentences (+) Regular Sentences (−) Imbalance
Ratio

CAST-15 2, 579 315 2, 264 7.2
CAST-30 2, 579 667 1, 912 2.9
DUC-200 20, 800 491 20, 309 41.4
DUC-400 20, 800 667 1, 912 20.8

Table 11.1: Brief summary of the datasets used in this experiment.

The documents were arbitrarily distributed to the annotators, therefore for some documents
there were multiple sets (up to three) of selected sentences while for others there was only one.
Considering this, we have selected the set of 89 documents that had a single annotator called
Annotator-1 and have modelled the sentences in the CAST-15 and CAST-30, separately. Out of
2, 579 sentences, the CAST-15 and CAST-30 datasets contain 315 and 667 sentences labeled as
summary sentences, respectively (Table 11.1).

Our second dataset is from one of the dataset collections prepared for the Document Un-
derstanding Conference 2002, widely known as the DUC2002 collection [16]. This collection is
highly regarded as the benchmark for multi-document summarization. In this collection, one of
the datasets contains 59 clusters of 533 newswire articles on 30 different topics. The sources of
the articles include but are not limited to the Financial Times, the Wall Street Journal, and the
Associated Press. The articles in each cluster belong to the same topic. Each cluster has a 200-
word and a 400-word summary interpreted as extracted summaries since the sentences in the
summaries are extracted directly from the articles in the cluster. Note that this dataset was not
used in the official DUC evaluation since the primary focus of the conference was on abstracts
rather than extracted summaries. In this experiment, DUC-200 and DUC-400 are the datasets
with the 200-word and the 400-word summaries, respectively. Out of 20, 800 sentences, the
DUC-200 dataset has 491 sentences and the DUC-400 dataset has 956 sentences labeled as sum-
mary sentences. Note that the imbalance ratio of these two datasets is much higher than that of
the CAST datasets (Table 11.1).

Treating each dataset in Table 11.1 independently, we have extracted all the sentences from
its articles and put them in one single document. This process of flattening of the dataset makes
the computing of the stylometric attributes comfortable.

11.3.2 Attributes for Summary Sentence Classification

We have represented each sentence in the datasets as (~x, y), where ~x ∈ R87 is a vector of the 87
stylometric attributes and y ∈ {+, −} is the sentence label. A sentence has the label +, if it is a
summary sentence, − otherwise. The labels are provided by the human annotators of the CAST
and DUC datasets.

A brief list of the stylometric attributes used in this research can be found in Table 11.2.
Details of these attributes are provided in the following discussion.
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No. Name No. Name No. Name No. Name
A1 Fog Index A23 Word Length A45 Numeric WSW % A67 Number
A2 Fog Index WSW A24 Word Length

WSW
A46 Lowercase A68 Determiner

A3 Simple Word Fog
Index

A25 Syllable Count A47 Lowercase % A69 Preposition

A4 Simple Word Fog
Index WSW

A26 Syllable Count
WSW

A48 Lowercase WSW A70 Adjective

A5 Inverse Fog Index A27 Long Sentence A49 Lowercase WSW
%

A71 Noun

A6 Inverse Fog Index
WSW

A28 Short Sentence A50 Uppercase A72 Pronoun

A7 FORCAST A29 Word Count A51 Uppercase % A73 Adverb
A8 FORCAST WSW A30 Function Word A52 Uppercase WSW A74 Verb
A9 SMOG Index A31 Function Word % A53 Uppercase WSW

%
A75 Interjection

A10 SMOG Index
WSW

A32 Content Word A54 Long Word A76 Foreign

A11 FKRI A33 Content Word % A55 Long Word % A77 List
A12 FKRI WSW A34 Alphanumeric A56 Long Word WSW A78 Possessive
A13 Flesch A35 Alphanumeric % A57 Long Word WSW

%
A79 Particle

A14 Flesch WSW A36 Alphanumeric
WSW

A58 Unique Word A80 Symbol

A15 Complex Word A37 Alphanumeric
WSW %

A59 Unique Word % A81 Character

A16 Complex Word % A38 Alphabets A60 Unique Word
WSW

A82 Character WSW

A17 Complex Word
WSW

A39 Alphabets % A61 Unique Word
WSW %

A83 Character per
Word

A18 Complex Word
WSW %

A40 Alphabets WSW A62 Repeated Word A84 Character per
Word WSW

A19 Simple Word A41 Alphabets WSW % A63 Repeated Word % A85 Character without
Space

A20 Simple Word % A42 Numeric A64 Repeated Word
WSW

A86 Character without
Space WSW

A21 Simple Word
WSW

A43 Numeric % A65 Repeated Word
WSW %

A87 Special Character

A22 Simple Word
WSW %

A44 Numeric WSW A66 Conjuction A88,
A89

Positive/Negative
Distribution

Table 11.2: The list of attributes used in this research. This list comprises stylometric attributes
like text complexity attributes (A1–A28), word-level attributes (A29–A80), and character-level
attributes (A81–A87). The attributes A88 and A89 are the positive and negative distributions
provided by the k-Nearest Neighbor classifier and used in the second stage of our two-stage
classification approach. WSW means without stopwords.
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Text Complexity Attributes

Every sentence has a level of reading complexity. To gauge it, there are many de facto stan-
dard scores such as Fog Index, Smog Index, Flesch Reading Ease Score, Forcast, and Flesch-
Kincaid Index. Calculation of these scores is centred around the use of simple and complex
words in a text unit. Note that in contrast to simple words that have at most two syllables,
complex words contain three or more syllables. In this study, we have considered the afore-
mentioned text complexity scores as well as the frequency of simple and complex words as
attributes for summary sentence classification. In addition, contrary to the Fog Index that
measures the proportion of complex words in a text unit, we have chosen the relative use of
simple words in a sentence as an attribute (referred to as the Simple Word Fog Index attribute
in Table 11.2). Another such modified attribute we have considered is the Inverse Fog Index
which, as the name suggests, is the arithmetic inverse of the Fog Index. The details of the
attributes—especially the readability scores—are beyond the scope of this paper; a description
of the readability scores can be found in [21]. The rest of the attributes in this category are quite
self explanatory: the average word length is the average of syllables present in the words of
a sentence and the number of syllables is simply the count of syllables in a sentence. Finally,
we have considered two boolean attributes: long and short sentence, where long sentences
are composed of more than 20 words. In this category, we have selected 28 attributes that
contribute to the complexity of text.

Word-level Attributes

This category contains the bulk of the attributes we have selected, 52 to be specific. During
the calculation of these attributes, we have considered each sentence as a bag-of-words. Most
of the attributes in this category are self explanatory. Word count, as its name suggests, is the
length of a sentence. We have utilized a standard English function word lexicon to distinguish
between function and content words. Other attributes in this category are alpha-numeric, all-
alphabets, all-numeric, lowercase, uppercase, long word (i.e., the percentage of words with
more than five characters), unique word (i.e., the percentage of words used only once in a sen-
tence), and repeated word (i.e., the percentage of words used multiple times in a sentence).
Note that, our notion of alpha-numeric word is not commonplace as we have specified a word
as being alpha-numeric only if it contains both alphabetics and numerics. In addition, we have
used the Stanford part-of-speech tagger [22] to tag the each word’s part-of-speech. The set of
part-of-speech based attributes includes conjunction, number, determiner, preposition, adjec-
tive, noun, pronoun, adverb, verb, interjection, foreign, list, possessive, particle, and symbol.
Details regarding these part-of-speech tags can be found in the Penn Treebank’s tag descrip-
tion [23].

Character-level Attributes

Our last category of attributes includes several character-level attributes such as total characters
including and excluding whitespaces, characters per word, and special characters. The number
of character-level attributes we have considered for this study is 7.

Note that we have calculated the attribute values with and without function words. The
exceptions are the long/short sentence, word frequency, function word, content word, parts-
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(a) Importance of attributes for the CAST-15
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(b) Importance of attributes for the CAST-30
dataset.
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(c) Importance of attributes for the DUC-200
dataset.
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(d) Importance of attributes for the DUC-400
dataset.

Figure 11.1: Attribute importance for the datasets using the Boruta algorithm.

of-speech, and special character attributes which are calculated without removing the function
words.

Attribute Importance

Determining salient attributes to decide the class of data instances is highly recommended in
machine learning methods [24] [25]. Therefore, to observe the importance of the stylometric
attributes, we used a state-of-the-art algorithm named Boruta1. This unique algorithm uses a
wrapper around the Random Forest classification algorithm and iteratively removes attributes
which are proven to be less important than random probes according to a statistical test. The

1http://cran.r-project.org/web/packages/Boruta/index.html
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selection process is both unbiased and stable, and its usefulness has been successfully demon-
strated by Kursa and Rudnicki [24] on an artificial dataset.

One nice feature of the algorithm’s implementation is its representation of the attributes
and their importance as a 2−dimensional box plot. In the plot, a point on the x-axis represents
an attribute and its corresponding point on the y-axis refers to its importance in quantitative
terms. In addition, the green boxes represent the attributes that are important while the red
boxes denote the attributes that are unimportant; the yellow boxes merely refer to attributes
that are neither important nor unimportant.

We have applied Boruta on all of our datasets and the results are illustrated in Figure 11.1
(for the attribute numbers in the figure, refer to Table 11.2). Surprisingly, they demonstrate the
strength of the character-level attributes. For all four datasets, most attributes from this category
have the highest importance. The only exception is the special character attribute: although
it has some importance for the DUC datasets, it is found unimportant for the CAST datasets.
Interestingly, part-of-speech attributes like interjection, foreign, and list are unimportant for all
the datasets. A careful examination shows that none of the datasets have any word from these
categories. Additionally, there are other attributes that are found to be unimportant across all
the datasets: long sentence, percentage of unique words without function words, and frequency
and percentage of repeated words without function words. It was surprising to us since we had
expected at least long sentence to be a strong attribute because of the length constraint put
on the summary extracts during the dataset curation. Attributes related to alpha-numerics,
numerics, uppercase, adverbs, and symbols are found to be unimportant for the CAST datasets.
Interestingly, nouns are among the most important attributes for the DUC datasets and verbs are
found to be strong for the CAST-30 dataset.

Note that the most important attributes in Figure 11.1 (A88 and A89) are the two data dis-
tributions found from the k-nearest neighbour classifier in our two-stage classification. Details
regarding these two highly important attributes can be found in Section 11.3.3.

11.3.3 Classifier Design
Multi-stage or cascading learning [26] [27] is a special case of ensemble learning. As the
name suggests, several classifiers C1,C2, ...,Cn−1,Cn are staged serially so that Cn learns not
only from the attributes of the training instances but also from the class distributions of these
instances provided by Cn−1 (e.g., if Cn−1 is a decision tree, the class distributions are probability
values of class membership for the training instances). In contrast to this multi-stage learning,
voting or stacking ensembles are multi-expert learning methods. Multi-stage learning methods
are often as fast and as good as ensemble learners but only require simple learners in their
cascades.

To classify summary sentences, we have designed a two-stage learner: our first stage in-
volves a k-Nearest Neighbour learner [28] while our second stage is a Naı̈ve Bayes learner [29].
There are several reasons for choosing these learners for our two-stage classification. First, both
learners are stable: a small change in the training data rarely affects performance. Second, we
are interested in exploiting the strengths of both discriminative (k-Nearest Neighbour) and gen-
erative (Naı̈ve Bayes) learners. Third, both learners are simple as their objective functions are
based on probabilities. Last but not least, both learners—especially Naı̈ve Bayes—perform
well in text-based classification. We have used the implementations and the default parameter
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Figure 11.2: The learning curve of the k-Nearest Neighbour classifier on the CAST-30 dataset
used to determine the optimum value of k.

values of these learners found in the Weka machine learning toolkit [30].
The overall learning is evaluated using a stratified 10-fold cross validation. Treating each

dataset independently, the values for the 87 stylometric attributes are computed for each sen-
tence. Then, each dataset is randomly divided into 10 equal-sized stratified sets. Stratification
means that the + and − classes in each set are represented in approximately the same proportion
as in the full dataset. One set is used for evaluation and the remaining sets for construction of
a k-Nearest Neighbour classifier (stage 1 of 2). This classifier then generates two probability
values (one for each class) for each instance in the evaluation set. This cross-validation process
is then repeated until each of the 10 sets is used exactly once as the validation data for the
k-Nearest Neighbour classifier. Now, in addition to the 87 stylometric attributes, each instance
in the dataset has been assigned two more attributes. So, each instance is now represented by
89 attributes and and each has the human-assigned class attribute. Using these attributes, a
Naı̈ve Bayes classifier then generates models in a stratified 10-fold cross validation (stage 2 of
2). We report the average values for the 10 folds of the measures described in Section 11.3.4.

Finding a good value of k for a k-Nearest Neighbour classifier is important since a too
low k value usually generates a low bias-high variance classifier which may experience an
overfit. On the other hand, a too high k value may generate a high bias-low variance classifier
which perhaps underfits the data. To find the correct value of k, we have examined the bias-
variance tradeoff using a learning curve where training and validation error rates of the k-
Nearest Neighbour classifiers are plotted by varying the value of k from 1 to 29; only the odd
numbers in this range have been considered. As suspected, the learning curve in Figure 11.2
illustrates that low k values generate low bias-high variance classifiers for the CAST-30 dataset:
the classifiers have very low training error but comparatively high validation error. However,
according to the curve, we can expect to get a smooth decision boundary with k = 15. The k
values for the remaining datasets are obtained in a similar way; we, however, have not included
their learning curves that can be found elsewhere2.

2http://cogenglab.csd.uwo.ca/additionalmaterial/summary/text-summary-learning-curves-2014.

zip
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Actual
+ −

Prediction
+ True Positive (TP) False Positive (FP)
−False Negative (FN)True Negative (TN)

Table 11.3: Confusion matrix for summary sentence classification problem.

11.3.4 Evaluation Measures
To summarize the performances of the classifiers, we have used a wide variety of standard
evaluation measures. The measures include precision, recall, F-score, accuracy, false positive
rate, false negative rate, area under curve (AUC), and the Matthews correlation co-efficient.
Noting that all of the datasets we have used suffer from a high class imbalance ratio (see
Table 11.1), we have selected the measures because all except accuracy can deal with the class
imbalance problem.

To understand the measures, refer to the confusion matrix shown in Table 11.3. The pre-
cision of classification is the fraction of instances correctly classified (into one of the two
classes). Quantitatively, in our case it is the number of correct predictions for the summary
sentence class divided by the total number of summary sentence predictions (Eq. 11.1). The
recall (or true positive rate), on the other hand, is the fraction of relevant instances (for a class)
that are correctly classified, which in our case is the number of correct predictions for the sum-
mary sentence class divided by the number of summary sentences in the dataset (Eq. 11.2).
The F-score is the harmonic mean of the precision and the recall to represent their average (Eq.
11.3).

Precision =
TP

TP + FP
(11.1)

Recall =
TP

TP + FN
(11.2)

F-score =
2 × Precision × Recall

Precision + Recall
(11.3)

The accuracy of a method represents the fraction of its overall classifications—both for +

and − class in our case—that are correct (Eq. 11.4). However, for datasets with a high class
imbalance ratio, this measure is not appropriate because it does not reflect misclassification
costs and has a strong bias to favour the majority class [31]. Nevertheless, we have reported
classification accuracy since it has been reported by some contemporary studies [9].

Accuracy =
TP + TN

TP + FN + FP + TN
(11.4)

The false positive rate (FPR) is the fraction of negative instances that are misclassified. In
our case, it is the number of sentences misclassified as a summary sentence divided by the total
number of sentences that are not summary sentences (Eq. 11.5). Similarly, the false negative
rate (FNR) is the fraction of positive instances that are misclassified. Interpreting Eq. 11.6 for
our task, it is the number of misclassified summary sentences divided by the total number of
summary sentences.
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FPR =
FP

FP + TN
(11.5)

FNR =
FN

FN + TP
(11.6)

In addition, we report the area under curve (auc) which is a single scalar value representa-
tion of a method’s receiver operating characteristic (ROC) performance. A ROC curve plots true
positive rates (Eq. 11.2) and false positive rates (Eq. 11.5) for a binary classification method.
The value of AUC will always be between 0 and 1.0. A random method will have an AUC of
0.50 and no realistic method should have an AUC less than this. In practice, this measure dis-
criminates well and is often a good choice when a general measure of predictiveness is desired
for data with a high imbalance ratio [32].

Our last measure to gauge the classification performance is the Matthews correlation co-
efficient (MCC) [33]. This correlation measure takes both positives and negatives into account
(Eq. 11.7) and is a highly regarded measure when the class sizes vary significantly. In essence,
MCC reports the correlation between the actual classes and the predicted classifications made
by a method. Its value is always between −1 and +1, where +1 represents a perfect method,
0 represents a random method and −1 refers to a method that totally disagrees with the actual
class membership.

MCC =
(TP × TN) − (FP × FN)

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(11.7)

11.4 Results and Discussions

11.4.1 Performance of the Proposed Method
Table 11.4 summarizes the performance of our proposed method and shows comparable results
from previous studies. The comparisons discussed below are made with a paired t-test by
setting the significance level, α, to 0.05 (i.e., with 95% confidence interval).

The precision, recall, and F-scores for our method for the two CAST datasets are really
impressive (Rows 1 and 4). In addition, the high AUC values show that our method does not
suffer from any serious recall-FPR tradeoff and the near-perfect MCC scores indicate that the
class imbalance ratio present in these datasets has almost no effect on the learned model. The
impressive FNR values for the datasets denote that our method misclassifies only 1% and 0.6%
of the summary sentences for the CAST-15 and CAST-30 datasets, respectively. As expected,
the method performs slightly better on the CAST-30 dataset. For the CAST-15 dataset, we have
compared our results with that reported by Leskovec et al. [10] [11] (Rows 2 and 3). Our
method performs significantly better than them in terms of precision, recall, and F-score. On
the other hand for the CAST-30 dataset, we have compared our work with Leskovec et al. [10]
[11] (Rows 5 and 6), Berker and Güngör [8] (Row 7), and Villatoro-Tello et al. [9] (Rows 8 and
9). Again, the comparisons show that our method outperforms these state-of-the-art methods
by a wide margin. The F-score that is the closest to ours is reported by Villatoro-Tello et al. [9]
which is 90.1% with their word sequence model (Row 9). Note that in their study, Berker and
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Dataset Row Method Precision
%

Recall
%

F-score
%

Accuracy
%

FPR FNR AUC MCC

CAST-15

1 Stylometry Model 99.0 98.7 98.9 99.7 0.001 0.010 0.999 0.989
2 Position and Graph Model [10] 32.5 70.9 44.5
3 Head Noun and Verb Model [11] 48.0 47.0 48.0

CAST-30

4 Stylometry Model 99.1 99.4 99.3 99.6 0.003 0.006 0.997 0.989
5 Position, Graph and Linguistic Model [10] 44.5 65.6 53.0
6 Heads of Logical Form Triplets Model [11] 42.0 67.0 52.0
7 Lexical Chain Model [8] 46.0
8 Single Word Model [9] 88.7 84.4 86.5 79.8
9 Word Sequence Model [9] 96.5 84.5 90.1 84.5

DUC-200

10 Stylometry Model 18.0 98.4 30.4 89.4 0.108 0.017 0.983 0.397
11 Position and Graph Model [10] 33.7 64.4 44.2
12 Heads of Logical Form Triplets Model [11] 40.0 40.0 40.0
13 Columbia Summarizer [17] 19.0 14.7 16.6

DUC-400
14 Stylometry Model 42.1 98.6 59.0 93.7 0.065 0.014 0.987 0.623
15 Columbia Summarizer [17] 23.8 19.6 21.5

Table 11.4: Summary of the performance of the proposed two-stage method using stylometric
attributes, as well as results from previous studies.

Güngör [8] only have reported the precision of their method (Row 7). Overall, the results on
the CAST datasets suggest that our method is highly effective classifying summary sentences
from single documents in the newswire article genre.

Interestingly, the results of our method on the DUC datasets are not as good as we had
expected. Table 11.4 shows that for these datasets, our method has maintained outstanding
recall but has lost ground on precision. As a result, we report comparatively low F-scores on
these datasets (Rows 10 and 14). Also, contrary to the negligible difference in the precision,
recall, and F-score between the two CAST datasets, the difference in these scores between the
two DUC datasets is more substantial. Although the AUC scores are still high, low MCC scores
suggest that our method has suffered from the high class imbalance ratio of the DUC datasets.
In addition, the FNR values indicate that it misses about 2% and 1% of the summary sentence
data from the two datasets. For the DUC-200 dataset, we have compared our results with
Leskovec et al. [10] [11]. With their position and graph model, they reported an F-score
of 44.2% [10] (Row 11) while the F-score with their heads of logical form triplets model is
40.0% [11] (Row 12). These results are much better than what we have obtained. However,
our method outperforms the Columbia multi-document summarizer [17] for both the DUC-200
and DUC-400 datasets (Rows 13 and 15); the differences are statistically significant. Readers
are encouraged to see paper [17] to find the results of the top five summarizer systems submitted
in the DUC 2002 competition. The best of the summarizers (system code 19) on the DUC-200
dataset had an F-score of 18.4%. On the other hand, the best performance on the DUC-400
dataset was from a system (code 21) that had an F-score of 25.2%. Therefore, our results
are much better than these submitted systems. To sum up, the results on the DUC datasets
are mixed—the method still lacks the desired precision for multi-document summarization.
One possible explanation for these low precision values is the following. When the human
summaries are produced from multiple documents, from a set of similar sentences only one
(or a few) is usually chosen. Since each cluster in the DUC2002 collection is composed of
approximately 10 newswire articles on the same topic, the likelihood of choosing the wrong
sentence(s) from a set of similar sentences increases when choosing fewer sentences (DUC-200
vs. DUC-400), thus increasing the number of false positives. This hypothesis is supported by
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Figure 11.3: Precision-Recall Curves for the four datasets.

the FPR values in Table 11.4: the FPRs of the method on the DUC datasets (Rows 10 and 14)
are significantly higher than those on the CAST datasets (Rows 1 and 4), and the FPR is higher
for the DUC-200 dataset compared to the DUC-400 dataset.

The results we have found raises an important question—why did the two-stage classifica-
tion perform as well as this? To answer this question, we need to examine the individual per-
formance of the two learners—k-Nearest Neighbour and Naı̈ve Bayes—on the four datasets.
Table 11.5 summarizes the FPR and FNR of the k-Nearest Neighbour and Naı̈ve Bayes learn-
ers. These measures have been obtained using a 10-fold cross validation. For the k-Nearest
Neighbour learners, the low FPR-high FNR in the data refers to their good ability to classify
positive data points (summary sentences) and their poor ability to classify negative data points.
This is completely opposite for the Naı̈ve Bayes learners—they have low FNR-high FPR. In
essence, the two learners used in our method are complementing each other thereby resulting
in the reported classification results.
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Dataset Learner FPR FNR

CAST-15
k-Nearest Neighbour 0.117 0.787
Naı̈ve Bayes 0.489 0.155

CAST-30
k-Nearest Neighbour 0.239 0.606
Naı̈ve Bayes 0.503 0.147

DUC-200
k-Nearest Neighbour 0.023 0.969
Naı̈ve Bayes 0.517 0.161

DUC-400
k-Nearest Neighbour 0.044 0.930
Naı̈ve Bayes 0.530 0.143

Table 11.5: FPR and FNR of the k-Nearest Neighbour and Naı̈ve Bayes learners.

11.4.2 Effect of Data Size
In this section, we report the effect of data size on classification performance. To observe this
effect, treating each dataset independently, we have generated nine equally sized sets. Each set
contains x% of the original data with repetition and x has been varied from 10% to 90% with
an increment of 10% per set. Therefore, our first set contains 10% and the ninth set contains
90% of the data. Then, on each original set we have run a 10 times 10-fold cross validation
and recorded our method’s precision and recall. Empirically, this should reduce the variance
of our method across datasets with different size. With the data found from this experiment,
we have plotted the precision-recall curve for each dataset.

The precision-recall curves in Figure 11.3 show that the data size has some effect on our
method’s performance. For the CAST-15 dataset, the curve is ideal and outlines the increase
of both the precision and recall with the growth of the data size (Figure 11.3a). However,
for the CAST-30 dataset, we get better recall with more data by compromising the precision
ever so slightly (Figure 11.3b). On the other hand, the tradeoff is relatively high for the DUC
datasets. Increasing data increases the recall slightly with a steep decrease in precision. Most
importantly, however, the plots suggest that the precision-recall tradeoff stabilizes as we add
more data.

11.5 Conclusions and Future Work
Summary sentence classification is regarded as a pivotal and reasonably complex step to gen-
erate summaries for text documents. Importantly, the quality of a summary depends much on
the correctness of this step. Our aim is to provide a simple solution to this reasonably com-
plex problem. We propose a statistical learning method to model sentences using a novel set
of attributes related to stylometry—a popular linguistic study of writing styles. To learn the
models, a discriminative and a generative learner are used in an interesting two-stage classifi-
cation setup. The learners used in this experiment are the k-Nearest Neighbour and the Naı̈ve
Bayes learners. Our extensive experiments with the summarization data collected from two
benchmark datasets named the CAST dataset and the DUC2002 collection strongly suggest that
the proposed method performs very well for the single document summarization task. On the
other hand, its performance is mixed for classifying summary sentences from multiple doc-
uments. Finally, comparisons show that our method performs much better than most other
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state-of-the-art summarization methods.
There is still room for improvement. First, we use only newswire articles in our experiment;

results may vary for texts from domains like science and technology. Second, our performance
on multi-document summarization is mixed. Although we have outlined possible reasons for
this in Section 11.4.1, a thorough investigation is left as future work. Finally, more analysis
should be done on anaphora, at least for the DUC datasets, since pronouns are regarded as a
salient attribute for these datasets.
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Conclusions

This study explores various possibilities to identify informativeness in natural language text
utilizing a more general as well as a domain- and genre-independent set of attributes. We
work with a set of attributes novel to this task that are related to a linguistic study called
Stylometry which can be used to interpret writing styles in texts. Interestingly, we find that
these stylometric attributes are somewhat closely related to another linguistic theory called the
Code Quantity Principle. According to this principle, humans codify important information in
their writing by changing certain linguistic elements that are also important for Stylometry. We
combine the ideas from these two linguistic studies: that informativeness in natural language
text can be found by analyzing the stylometric elements present in the writing styles of its
authors.

There are many natural language attributes that attempt to find informativeness in text.
However, the general theoretical and empirical literature on this subject discuss much about
these attributes’ weaknesses by being genre and domain dependent. Therefore, the biggest
challenge of this study is to explore the possibilities of the stylometric attributes to find infor-
mativeness in texts by answering the following research questions:

1. Are the stylometric attributes an effective means to find informativeness in natural lan-
guage text?

2. How do the stylometric attributes perform with different genres of texts?

3. How do the stylometric attributes perform for different natural language processing
tasks?

12.1 Empirical Findings
This thesis is an example of how ideas, concepts, methodologies, and evaluations evolve over
the research lifetime of a thesis. We have studied different methods and techniques to explore
the possibilities of stylometric attributes to determine informativeness in texts and have pro-
vided substantial evidence to answer the aforementioned questions positively. The evidence
is based mostly on empirical studies conducted on different genres of texts like biomedical,
food and agriculture, physics, computer science, economics, conversational texts, and news for
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Biomedical Food and
Agriculture

Physics Computer
Science

Economics Conversational
Texts

News

Relation Mining X × × × × × ×

Keyphrase Indexing X X — X — × ×

Spam Classification × × × × × X ×

Summarization × × × × X × X

Table 12.1: The performance summary of the stylometric attributes for different genres of text
(the columns) for different NLP areas (the rows). Items show where stylometric attributes
were successful (cells with a ‘X’), where there is room for improvement (cells with a ‘—’ ),
and areas and genres that were not explored (cells with a ‘×’).

different currently popular tasks such as biomedical relation mining, keyphrase indexing, spam
classification, and text summarization. A brief summary of the performance of stylometry in
determining informativeness in text is laid out in Table 12.1. The items show where stylometric
attributes were successful (cells with a ‘X’), where there is room for improvement (cells with
a ‘—’ ), and areas and genres that were not explored (cells with a ‘×’).

We find substantial evidence to support the the use of stylometric attributes for the biomed-
ical relation mining task. To be precise, we are not interested in actually mining biomedical
relations but rather to classify sentences in biomedical articles that contain them. Using only
one of the attributes and a few simple rules, we attempt to find sentences describing the rela-
tions between human diseases and chemicals responsible for them (Chapter 2). The results are
impressive as they show that this method correctly classifies approximately 75% of the sen-
tences containing these relations in a dataset. In Chapter 3, we conduct a similar experiment
but with a few more stylometric attributes, but the results are comparatively no better. Next,
we outline a machine-learning apprach by modelling sentences of biomedical articles using
103 stylometric attributes and a two-stage classification. The results are better this time. The
evidence from this last study strongly suggests that stylometric attributes are strong contenders
for classifying sentences that contain protein-protein interactions.

As well, we explore the strengths of the attributes for automatic keyphrase indexing. How-
ever, this is one of our earlier experiments and therefore, the method we use for this task as
described in Chapters 4 and 5 is similar to that reported in Chapters 2 and 3. This time, we
use the attribute to generate subsets of informative text from full-length articles and train three
keyphrase indexers. Results suggest that for all the indexers, the subsets treat the informative
text as better training data. This finding indicates the strength of the attribute in classifying sen-
tences that contain keyphrases in research articles. To test the attribute, we use texts from three
different genres: agriculture, physics, and biomedical science. After further development of
our ideas using machine learning, we return to this problem, replacing the rules with machine-
learning models and increasing the number of attributes. The results with machine-learning
techniques, again, are better than those with rules (Appendix A).

Spam detection is a classic natural language processing task. Our approach to this problem
is somewhat different than previous approaches. And additionally, instead of our sentence-by-
sentence approach, we model the full textual content of an email with stylometric attributes.
Our experimentation is rigorous: we use nine email datasets, 37–40 stylometric attributes, and
supervised learning with five different learning algorithms. The findings of the experiments
are interesting. The attributes are not as strong as they seem for the other tasks but when used
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together with certain other attributes particularly suited to this domain, the results are better
than most of the benchmarks. Another interesting observation is that the stylometric attributes
perform better on emails collected from a single source (or person) than on emails collected
from multiple sources. Details can be found in Chapters 7 to 9.

We finally select another classic problem of single and multiple document summarization.
However, we are interested in extracting summary sentences with our method rather than de-
veloping a full-functional text summarizer. To do so, we model sentences from four benchmark
datasets using 87 stylometric attributes and two-stage classification. The outcomes of the ex-
periment suggest that the method outperforms most of the latest summarizers. Interestingly, the
method seems to work better for single document summarization. However, its performance
on multi-document summarization is also competitive. The overall description of this method
is outlined in Chapter 11.

12.2 Theoretical Implications
Identification of informativeness in text data is a challenge in natural language processing. This
is mainly due to the presence of a large variety of texts and a wide array of problem areas in
this domain. We propose a very simple solution for a fairly complex problem and explore its
possibilities for the various types of texts and problem areas. Our work attempts to relate the
elements of human codification of informativeness in text to the elements of human writing
style. Interestingly, the linguistic theory to observe the codification process called the Code
Quantity Principle and the study to observe writing styles called Stylometry have co-existed
for some time. Surprisingly, even though the two are logically connected, this thesis is the first
attempt to relate them and use writing styles to identify the codifications. We do discover that
one of the code quantity principles that relate the degree of informativeness linearly with the
number of lexical elements does not necessarily hold. Certainly, there is a relationship between
these two, but our study finds that the relationship is complex and this complex relationship
can be found by machine-learning models. Therefore, certain aspects of the principle should
be revisited according to our findings.

12.3 Recommendations for Future Research
In some of the final sections of the Chapters 2 to 11, we suggested some work for future re-
search. Much of the work mentioned in the early chapters has been accomplished and reported
in the later chapters. In addition, due to time constraints, some of the suggestions could not be
accomplished—they can be seen as possibilities to be explored by other researchers.

In Chapter 3, we left the work of pairing various readability measures with text denoising
as future work. However, we later abandoned this idea completely since they do not produce
competitive results compared to what is reported in Chapter 2. In Chapter 4, we left the possi-
bilities of pairing text denoising with other keyphrase indexers as future work. We successfully
completed the task with two indexers (described in Chapter 5). Unfortunately, the Medical Text
Indexer (MTI) 1 of the National Library of Medicine (NLM) was too slow to do any serious ex-

1http://ii.nlm.nih.gov/MTI/
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perimental work, since we were using its web interface. As a result, we did not further pursue
working with this indexer. We believe that further experimentation could have been insight-
ful since MTI is a specialized keyphrase indexer for biomedical documents. In Chapter 5, we
left the testing of keyphrase indexing with a dataset for which performance gain is much more
competitive. We completed this task and reported the outcome in Appendix A. The future work
on spam classification indicated in Chapter 6 is accomplished in Chapters 7 to 9. However, as
suggested in Chapter 7 and 9, we did not proceed with the stacking of machine-learning algo-
rithms or semi-supervised algorithms for the anti-spam filters, nor tested the filters for concept
drifts or real-time data as suggested in Chapter 8.

Besides what was left as future work and could not be accomplished in course of time, we
have some general recommendations to extend the research. First and foremost, while doing
the research we always kept in mind this question—how do writing styles represent codifica-
tion of informativeness?. However, we have limited our goal to exploring the applicability of
studying writing styles. Answering this question requires significant linguistic analysis and a
comprehensive study to make the link among human psychology, human writing, and human
codification of informativeness in text. Therefore, this avenue is still wide open for future
research.

Except for the spam classification task, for all other tasks, our method is used as a prepro-
cessing step for the original task, since this is what we set as our goal. Our method is not fully
integrated in any of the existing natural language processing tools except the anti-spam filter
that we developed. So, there is room to tightly couple our method of determining informative
sentences into benchmark biomedical relation miners, keyphrase indexers, or text summarizers
where the results could be stronger.

Keeping the future trends of biomedical science in mind, we suggest exploring the biomed-
ical Named Entity Recognition (NER) area with the stylometric attributes. Some of our exper-
iments show that the attributes are a good means to find human diseases and related chemical
components from biomedical research texts. But the attributes are never tested for biomedical
named entities in general. A few additional text components can make our method a competi-
tive tool for NER.

We have some recommendations for future work from the machine-learning point of view.
In most cases to report performance of our method on unbalanced datasets, we use cost-
sensitive evaluations; interested researchers may want to use cost-sensitive learning instead.

12.4 Limitations of the Study

This study explores the stylometric attributes for at least four major natural language processing
tasks, but has been constrained by time. As a consequence, the study encounters a number of
limitations, which need to be considered.

First, we only consider stylometric attributes that work at the character level, word level,
sentence level, and document level. There are some other attributes that work at the phrase
level, the clause level, and the paragraph level. These attributes, however, are not considered
in this study. Given their properties, we can assume that these attributes should provide good
results at least for the text summarization task.

Second, much of our data is collected from research articles. In some cases, during the
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data curation process, only the body text is retained. The rest, which includes figure and table
captions, is cleaned. Had this other text also been retained during the curation process, it could
have proved informative, too, at least for the protein interaction sentence classification task.

Third, we have annotated a dataset for keyphrase indexing using semi-supervised learning
(see Appendix A). The initial labels for the data points are provided by the author of this
thesis. However, the proper way to have the initial labels should be much more methodical.
For instance, two human annotators can be applied to annotate the data points. Then if the
agreements between the annotators are high, then the data points for which they disagree can
be given to a third annotator. Then on the basis of a majority voting the final set of initial labels
can be found.

12.5 Conclusions
A number of natural language attributes have been suggested as identifying textual informa-
tiveness or textual importance. In spite of what is often reported about their usefulness, in
practice, most of these attributes depend on the genre and the topic domain of the text. Also,
these attributes are rarely applicable across multiple standard and classic natural language pro-
cessing tasks. Positional attributes, for instance, are good for generating summaries but are
unsuited for classifying spam emails. Moreover, the importance of positional attributes is not
the same to generate newspaper summaries and medical form summaries.

We, therefore, need natural language attributes that are capable of identifying informative-
ness for many texts of different kinds and domains. With extensive experimentation, this thesis
shows that stylometric attributes are a competitive source of such attributes. These attributes
attempt to represent certain aspects of human writing style. To the best of our knowledge,
ours is the first attempt to relate human codification of information in texts with this type of
representation of writing style.
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Extended Work on Keyphrase Indexing

Our investigation on the denoising threshold reported in Chapters 4 and 5 points out that partly
because the notion of what is informative is given by a threshold on a measure, the amount
of text to include in the set of informative sentences changes for different genres of texts. The
heuristics to set the threshold are computed manually. This is problematic if this method of text
reduction is applied on an array of documents collected from different domains. To overcome
this problem, we introduce a machine-learning approach where the sentences in a document
are modeled with stylometric attributes and one or more statistical learners. Note, however,
that the machine-learning approach for keyphrase indexing is developed much later, in the last
two years of this thesis. Although we give a brief description of the stylometric attributes used
for keyphrase indexing in this section, more details can be found in the chapters following
Chapter 5. Also, the work described in this section can be a possible extension of the papers
comprising Chapters 4 and 5. Therefore, our plan is to combine this work with the publications
on keyphrase indexing for a possible journal submission.

The machine-learning approach to text donoising can be seen as a binary classification
problem. The two classes, in this case, are sentences that may contain keyphrases and others
that don’t. We represent each sentence in a documents as (~x, y), where ~x ∈ R30 is a vector
of the 30 stylometric attributes (see Table A.1 for a brief summary, details can be found in
the chapters following Chapter 5) and y ∈ {+, −} is the label of the sentence. A sentence has
label +, if the sentence contains a keyphrase, −, otherwise. Our aim is to train a classifier on the
stylometric attributes to label sentences from documents and then to provide only the sentences
labelled as + to the indexer Maui [1]. Maui then treats these sentences as its training data and
builds a model. Finally, the model can be evaluated on test documents. In other words, the
machine-learning method we discuss here can be seen as an preprocessing step for Maui to
build better models with reduced data, perhaps with more informative data.

To train a binary classifier on data, the first and foremost condition is to have them labeled
as + and −. Unfortunately to the best of our knowledge, no dataset used to evaluate keyphrase
indexing has this annotation. Therefore, annotating a dataset is the biggest challenge for this
work. This is where semi-supervised learning becomes helpful. This type of statistical learning
is very useful if the amount of labelled data is very small and often produces better results than
supervised learning. The details of semi-supervised learning are beyond the scope of the thesis.
However, interested readers can find the details about this novel statistical learning in [2].

As the dataset for this experiment, we have chosen the SemEval-2010 task 5 dataset [3].
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Category Quantity Description
Word-level Attributes 5 Alpha-numeric words, Function words,

tf·isf.
Sentence Position Attributes 3 Position of a sentence in a document.
Readability Attributes 22 Simple and complex words, Fog index,

Simple and Inverse Fog index, Sentence
Length, Word length.

Table A.1: Summary of the attributes: category, quantity, and description.

Task 5 of the conference was to automatically assign keyphrases to scientific articles. The
training data is composed of 144 scientific articles and the test data is compsed of 100 articles
collected from the ACM Digital Library (conference and workshop papers). These articles are
grouped into four sets according to the 1998 ACM classifications: C2.4 (Distributed Systems),
H3.3 (Information Search and Retrieval), I2.11 (Distributed Artificial Intelligence—Multiagent
Systems) and J4 (Social and Behavioral Sciences—Economics).

To provide the initial set of training data for our semi-supervised classification problem,
one training article from each of the four ACM classification categories is randomly selected.
Then, the sentences of these articles are annotated by the author of this thesis with a + label
if the sentence seems to contain a keyphrase, with a − label, otherwise. These few labelled
data are then used to annotate all of the unlabelled sentences in the remaining training articles
using self-training. In self-training, using a set of initially labelled data L, a classifier, C1 is
generated. This classifier is then applied on a set of initially unlabelled data U. According to a
pre-set confidence threshold, the classification of unlabelled data is observed. If the classifier’s
confidence reaches the threshold, the newly classified instances are concatenated with L to
produce a set Lnew and removed from U to produce Unew. A second classifier, C2 is generated
from Lnew and then is applied on Unew. This cycle continues until the classifier converges—
which means that either (a) all of the unlabelled data are confidently labelled by the classifier
or (b) the classifier’s confidence fails to reach the threshold for at least one unlabelled data item
for several cycles, in which case, the unlabelled data is discarded. In our study, we use Naı̈ve
Bayes as the learning algorithm for the classifier and heuristically set its confidence threshold
to 98%. If we compare these annotated data to what we have reported in Chapters 4 and 5, then
the sentences labelled as + can be seen as the denoised text and those labelled as − as the noise
text.

Once all the training data used in the SemEval-2010 are annotated, only the denoised text
is used to train Maui. The default parameter values for Maui that it used in the conference are
retained. Maui then generates a model and the model is applied on the test articles to generate
keyphrases. Just like the conference guidelines, we configure Maui to provide the top 5, 10, and
15 keyphrases for each test article. The keyphrases produced by Maui are then compared with
the gold standard keyphrases. Note that the gold standard is a combination of the keypharases
indexed by the authors of the documents and a few human assessors. As evaluation measures,
we select precision, recall, and F-score.

The performance of Maui trained with the denoised and the full text is summarized in Table
A.2. For all of the test documents combined, Maui’s precision, recall, and F-score when trained
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Keyphrase Indexer Top 5 Candidates
Precision% Recall% F-score%

Maui with Text Denoising 39.0 16.5 23.2
Maui in SemEval-2010 [3] 35.0 11.9 17.8

Top 10 Candidates
Precision% Recall% F-score%

Maui with Text Denoising 28.6 21.4 24.5
Maui in SemEval-2010 [3] 25.2 17.2 20.4

Top 15 Candidates
Precision% Recall% F-score%

Maui with Text Denoising 23.9 24.9 24.4
Maui in SemEval-2010 [3] 20.3 20.8 20.5

Table A.2: The performance of Maui with denoised and full text as its training data

with the denoised text are significantly better than that reported in [3], i.e., when trained on the
full text. Convincingly, for each number of keyphrase candidates—top 5, 10, and 15—the
denoised text training data produces a better performing Maui than the full-text data which
was used to train the indexer in the conference. To test the difference in the scores, we use a
paired t-test by setting the significance level α = 0.5. We also compare the F-score of Maui
using the denoised and the full text training data for each of the ACM categories (Table A.3).
Interestingly, Maui performs much better with the denoised training data for the C, H, and I
categories. However, the indexer performs more poorly for the J category. Our investigation
shows that the following reasons might have affected the result for this category.

1. The articles from the J category are taken from economics domain. However, the anno-
tator who put the initial labels for the sentences (i.e., the author of this thesis) is from
the computer science domain. Therefore, the initial labels may not be as good as other
categories. Note that the articles from other categories are from the computer science
domain.

2. The human assessors who provided the gold standard keyphrases for the SemEval-2010
dataset were also computer science graduate students [3]. So, this might have affected
the quality of the gold standard keyphrases for the economics articles.

3. We have also reported the amount of text reduced during the self-training in Table A.4.
From the combined data, we see that our method overall reduces the original data to a

Keyphrase Indexer ACM Categories
C H I J

Maui with Text Denoising 23.0 24.4 20.1 18.0
Maui in SemEval-2010 19.3 23.9 17.6 21.3

Table A.3: The F-score ( %) of Maui with and without denoised text as its training data on the
individual ACM categories
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Category Total Sentence Sentence
Selected

Text Reduction
(%)

C 11, 464 5, 256 54.2
H 11, 466 1, 930 83.2
I 10, 494 3, 291 68.6
J 14, 903 197 98.7

Total 48, 327 10, 674 77.9

Table A.4: Total sentences in the training articles of the SemEval-2010 training data [3], num-
ber of sentences selected as training data for Maui and the rate of text reduction by the method.

remarkable 22% of its original size, but Maui, when trained with the reduced data, still
performs much better than its original benchmark. Hiwever, among the four categories,
only 3% (197 sentences out of 14, 903) of the original sentences from the J category are
selected by our method to train Maui. Such a small quantity of training data might be
another reason for the comparatively low F-score of a denoised text-trained Maui on this
genre of articles.

The data presented in this section confirms that the modelling of the sentences using sty-
lometric attributes and a threshold determined by the semi-supervised learning produces a rich
and reduced set of informative sentences. The burden of manually finding the denoising thresh-
old is overcome as now the classification models take care of this automatically. The perfor-
mance of Maui trained with the denoised text is much improved. In the SemEval-2010, the
rank of the indexer was 9th (the ranking was done on the basis of the performances on the top
15 keyphrase extraction). The indexer’s F-score when trained with the denoised text is 24.4%
which is the fifth best score in the conference.
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Parameter Settings

B.1 Parameter Settings for the Algorithms in Chapter 8

The experiments illustrated in Chapter 8 are carried out using the Weka data mining tool1. The
parameters set for the algorithms can be found in Table B.1.

Learning Algorithms Parameters

Random Forest (rf)
Maximum Depth: Unlimited Number of Trees to be Generated:

10
Random Seed: 1

adaboostm1
Number of Iterations: 10 Random Seed: 1

Resampling: False Weight Threshold: 100

bagging
Size of Bag (%): 100 Out of Bag Error: False

Number of Iterations: 10 Random Seed: 1

Support Vector Machine (svm)

SVM Type: C-SVC Cost: 1.0
Degree of Kernel: 3 EPS: 0.0010

Gamma: 0.0 Kernel Type: Radial Basis
Epsilon: 0.1 Probability Estimates: False

Shrinking Heuristics: True
Naı̈ve Bayes (nb) Use of Kernel Estimator: False

Table B.1: Parameters of the learning algorithms used in the experiments of Chapter 8.

1Download at: http://www.cs.waikato.ac.nz/ml/weka/
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B.2 Parameter Settings for the Algorithms in Chapter 11

The experiments illustrated in Chapter 11 are carried out using the Weka data mining tool2.
The two algorithms used in the two-stage classification method described in that chapter are
k-Nearest Neighbour and Naiı̈ve Bayes. Except for the k value for the former, other parameters
set for this experiment are the default values in the Weka tool. The overall parameter settings
can be found in Table B.2.

Classifier Parameters

k-Nearest Neighbour

No. of neighbours: k, the choice of k is different for dif-
ferent datasets. Justifications of this choice can be found in
Chapter 11.
Best k value selection: Using Training Data
Distance weighting: None
Nearest neighbour search algorithm: Linear nn Search (Dis-
tance function: Euclidean, Skip identical instances: False)
Window size: 0

Naı̈ve Bayes
Kernel estimator: None
Supervised discritization: No

Table B.2: Parameters of the learning algorithms used in the experiments of Chapter 11.

2Download at: http://www.cs.waikato.ac.nz/ml/weka/
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Copyright Forms of the Papers

There are seven published papers included in this thesis. Two of the papers described in Chapter
2 and 3 are from Open Access sources. Therefore, the copyright releases for those to papers
are not included herewith. For the papers published that are described in Chapter 4 to 8, the
copyright release forms are included in this appendix.
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Appendix D

Supporting Materials

Major Software Packages

1. The implementation of the summary sentence classifier (Chapter 11). Platform: Java and
Weka. Download link:
http://cogenglab.csd.uwo.ca/tools/text-summary-tool-2014.zip.

2. The software package for extracting protein interaction sentences from Biomedical
Articles (Chapter 10). Platform: Java and Weka. Download link:
http://cogenglab.csd.uwo.ca/tools/protein-interaction-tool-2014.

zip.

3. Sentinel— the supervised anti-spam filter (Chapter 7). Platform: Java and Weka. Down-
load link:
http://cogenglab.csd.uwo.ca/tools/sentinel-tool-2013.zip.

4. Text Denoising—the supervised/semi-supervised tool to reduce insignificant data (Chap-
ter 2 to 5). Platform: Java and WEKA. Download link:
http://cogenglab.csd.uwo.ca/tools/TextDenoisingv2-2.zip.

5. BioConEx—the supervised biomedical concept extractor (Chapter 2). Platform: Java
and Weka. Download link:
http://cogenglab.csd.uwo.ca/tools/BioConEx.rar.

Minor Software Packages

1. SentEx—a supervised API using Java and LingPipe sentence boundary model for ex-
tracting sentences from free text. Download link:
http://cogenglab.csd.uwo.ca/tools/SenTex.rar.

2. TRMS—a Text Readability Measuring Software using Java for measuring readability of
texts. Download link:
http://cogenglab.csd.uwo.ca/tools/TRMS.zip.
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3. LDI—a Lexical Density Indexing tool using Java for measuring lexical densities of texts.
Download link:
http://cogenglab.csd.uwo.ca/tools/LDI.rar.

4. tf-idf—a tool using Java to provide the tf-idf measure of a given set of texts. Download
link:
http://cogenglab.csd.uwo.ca/tools/TF-IDF.zip.

Data Files
All the data files are in Attribute-Relation File Format (ARFF) and can be accessible using
Weka (download from: http://www.cs.waikato.ac.nz/ml/weka/downloading.html).

1. The data files supporting the results of Chapter 11. Download link:
http://cogenglab.csd.uwo.ca/datasets/text-summary-datafiles-2014.

zip.

2. The data files supporting the results of Chapter 10. Download link:
http://cogenglab.csd.uwo.ca/datasets/protein-interaction-datafiles-2014.

zip.

3. The data files supporting the results of Chapters 7 to 9. Download link:
http://cogenglab.csd.uwo.ca/datasets/sentinel-datafiles-2013.zip.

Datasets
1. The datasets that we develop and annotate described in Chapters 2 and 3. The files are

in ASCII text format. Download link:
http://cogenglab.csd.uwo.ca/datasets/discease-chemical-datasets-2011.

zip.

2. The datasets that we annotate in this study are described in Chapter 10. The files are in
ASCII text format. Download link:
http://cogenglab.csd.uwo.ca/datasets/protein-interaction-datasets-2014.

zip.
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